
Machine Learning Models and Uncertainty for Atomic Simulations

Submitted in partial fulfillment of the requirements for

the degree of

Doctor of Philosophy

Department of Chemical Engineering

Ni Zhan

B.S., Chemical Engineering, The University of Texas at Austin
M.S., Machine Learning, Carnegie Mellon University

Carnegie Mellon University
Pittsburgh, Pennsylvania

December, 2021

© Ni Zhan, 2021

All Rights Reserved

Acknowledgments

First, I would like to thank my advisor Professor John Kitchin. I learned so

much scientific and research knowledge from John. He encouraged me to

persevere on problems when I could barely see a path forward, and inspired

me to try new and interesting research directions. I thank him for support

throughout my PhD and being especially understanding during unique

situations.

I want to thank my PhD committee, Prof. Zachary Ulissi, Prof. Michael

Widom, Prof. Aditya Khair, and Prof. Erik Ydstie, for their time and

insight. They are inspirational to me, and I am grateful and honored for the

opportunity to discuss research with them. I want to especially thank Prof.

Widom for the time we attended the High Performance Computing

conference and collaboration on the Ni-Al-W work.

Additionally on the Ni-Al-W work, I would like to thank Dr. Jim Lill, Dr.

Chris Woodward, and Dr. Bojun Feng for their collaboration. I also want to

thank Prof. Alan McGaughey for discussion and feedback on Al-Si work.

I gratefully acknowledge funding support from Project

PP-CCM-KY09-002-P3, Complex Atomistic Potentials through Machine

Learning of the User Productivity Enhancement, Technology Transfer, and

Training (PETTT) Program, the Department of Chemical Engineering, H.

Robert Sharbaugh Presidential Fellowship, and Thomas and Adrienne

Klopack Fellowship.

I want to thank my mentors from undergraduate study, Prof. Wei Li,

Prof. Thomas Edison, Prof. Amir Mohammadi, Prof. Michael Baldea, Prof.

Juan Ruiz, Dr. Hao Xin, Dr. Rohit Jain, and Dr. Jingyu Ock. Thank you

for believing in me, and thanks to all of the educators and professors who

have helped me.

iii

Thanks to Mingjie Liu, Yilin Yang, Maya Bhat, Junwoong Yoon, Dr.

Yijia Sun, and Jie Gong for helpful discussions and collaborative projects. I

thank the friends I met in graduate school for their support and shared

experiences, and thank all my friends for moral support.

Finally, I thank my parents for their love and support, and my mom for

encouraging me, to pursue the PhD and always.

iv

Abstract

As computational power grows, materials simulation becomes an

increasingly valuable scientific tool. Simulations are used to calculate

properties that are difficult to obtain experimentally, perform

high-throughput design and discovery, and investigate material behavior and

theory. Ultimately we want to push the time and length scales of simulation

and connect atomic scale with continuum scale properties. There is a

trade-off between accuracy and computational cost. One approach is to use

machine learned (ML) potentials as fast, accurate approximations to

quantum chemical methods. ML potentials are systematically improvable,

and can be as accurate as density functional theory at much lower

computational cost. Potential challenges are that ML potentials extrapolate,

and it is nonobvious when extrapolation occurs and how to efficiently build

the training dataset. In addition we would like to have uncertainty

measurements of ML models and physically simulated properties.

In this dissertation, we investigate the relationship between atomic scale

and continuum properties in liquid Al-Si using molecular dynamics (MD).

We study the local order using Voronoi polyhedrons and agglomerative

clustering, which allowed us to analyze the large amount of data generated

from MD trajectories in an efficient manner. We found that clusters have

minimal effect on diffusion while increasing viscosity, which is a likely origin

of the Stokes-Einstein deviation for liquid Al-Si at low temperatures near the

melting point. This study demonstrates the value of MD simulation and

using ML clustering and large datasets analysis to find new phenomena.

In the next part, we build a neural network (NN) potential for a complex

Ni-Al-W liquid alloy. We conducted hyperparameter studies on NN

v

architecture and Behler-Parrinello fingerprints. The ML potential was

iteratively tested in MD simulation and retrained with diverse dataset. The

final potential achieved comparable results with ab initio simulation. We

found that the NN potential extrapolated on inputs that were dissimilar

from its training data, which motivates uncertainty quantification.

We implement the multiparameter delta method for NN potentials (and

generally for other nonlinear models) with parameters trained by least

squares regression. The uncertainty measure requires the gradient of the

model prediction and the Hessian of the loss function, both with respect to

model parameters. We obtain the derivatives from ML software with

automatic differentiation. We show that the uncertainty measure is larger for

input space regions that are not part of the training data. Therefore this

method can be used to identify extrapolation, aid in selecting training data,

and assess model reliability.

In the final part, we compare uncertainties of physical properties from

delta method, Bayesian nonlinear regression, and Gaussian process (GP).

Many physical properties of interest require derivatives, therefore we derived

GP with joint distribution over a function and its first and second

derivatives. We show that delta method and Bayesian nonlinear regression

give model specific uncertainty while GP variance includes uncertainty with

respect to model selection.

vi

Contents

Abstract v

Contents vii

List of Tables x

List of Figures xi

1 Introduction 1
1.1 Motivation . 1
1.2 Technical background . 2

1.2.1 Potential energy surface 2
1.2.2 Molecular dynamics simulation 4
1.2.3 Machine learning . 8

1.3 Organization of dissertation 12

2 Machine Learned Potentials for Complex Alloy Systems 15
2.1 Introduction . 15

2.1.1 Machine learned potential 16
2.1.2 ML potential form and fingerprints 17
2.1.3 Training data for ML potentials 18
2.1.4 Objectives . 20

2.2 Methods . 20
2.2.1 Data . 20
2.2.2 Software . 21
2.2.3 ML potential hyperparameters 22
2.2.4 Efficient training . 24

2.3 Results . 25
2.3.1 Hyperparameter study 25
2.3.2 ML potential training and evaluation 30
2.3.3 Integration with MD simulation 36

2.4 Conclusions . 42

3 Origin of the Stokes-Einstein Deviation in Liquid Al-Si 44
3.1 Introduction . 44
3.2 Methods . 48

3.2.1 NPT cooling and NVT simulations 48
3.2.2 NPT melting point simulations 49
3.2.3 Diffusion . 50
3.2.4 Viscosity . 50
3.2.5 Effective diameter . 52
3.2.6 Radial distribution function 53
3.2.7 Coordination numbers 53

vii

3.2.8 Voronoi tessellation . 53
3.2.9 Clusters . 54
3.2.10 Per-atom viscosity and diffusion 55

3.3 Results . 57
3.3.1 Cooling simulation . 57
3.3.2 Melting point . 58
3.3.3 Diffusion . 60
3.3.4 Viscosity . 62
3.3.5 Stokes-Einstein relation 63
3.3.6 Radial distribution functions 65
3.3.7 Coordination number and chemical short-range order . 67
3.3.8 Voronoi polyhedrons 69
3.3.9 Cluster effects on viscosity and diffusion 75

3.4 Conclusions . 79

4 Uncertainty Quantification in Machine Learning and
Nonlinear Least Squares Regression Models 81
4.1 Introduction . 81

4.1.1 Uncertainty quantification methods 82
4.1.2 Addressing uncertainty in molecular simulation 83

4.2 Methods . 86
4.2.1 Practical modifications to the inverse Fisher matrix . . 88
4.2.2 Code example . 89

4.3 Results . 91
4.3.1 One dimension input NN 92
4.3.2 High dimensional NN potential 93

4.4 Conclusions . 101

5 Model Specific to Model General Uncertainty for Physical
Properties 103
5.1 Introduction . 103

5.1.1 Equation of state . 105
5.1.2 Probabilistic models in engineering applications 106

5.2 Methods . 108
5.2.1 Approximate inference for PGMs 108
5.2.2 Gaussian process joint including derivatives 110

5.3 Results . 113
5.3.1 Data . 113
5.3.2 Nonlinear regression 114
5.3.3 Bayesian regression . 116
5.3.4 Gaussian process . 117
5.3.5 Overall comparison of methods 122

5.4 Conclusions . 123

viii

6 Conclusions 124
6.1 ML potentials to accelerate simulations 124
6.2 Extensions in analyzing liquid atomic configurations 125
6.3 Uncertainty for models and physical properties 126

References 128

Appendix A Details for Ni-Al-W data 156

Appendix B Settings for hyperparameter study 157

Appendix C Additional MD results for Ni-Al-W 161

Appendix D Delta method theory 167

Appendix E Additional results for probabilistic EOS 169

ix

List of Tables
2.1 Dataset descriptions. No. atoms indicates number of atoms per

structure. Stress column indicates if stress data is available in
dataset. 21

2.2 Number of non-shifted radial functions 26
2.3 Shifted and non-shifted radial functions 27
2.4 Neural network nodes . 27
2.5 Cutoff radius for symmetry functions 28
2.6 Angular functions and four radial functions 29
2.7 Iterative retraining of model 37
3.1 Diffusion coefficients comparison with literature values82 . . . 61
3.2 Arrhenius fit parameters for diffusion and viscosity 65
3.3 Warren-Cowley CSRO parameter α1

ij for Al90Si10 69
3.4 Warren-Cowley CSRO parameter α1

ij for Al95Si5 69
4.1 Average standard errors of datasets 97
5.1 Equilibrium volume, equilibrium energy, bulk modulus from

different equations of state . 115
5.2 Standard error confidence of physical properties from delta

method . 116
A.1 Datasets with paths . 156
B.1 Number of radial functions detailed settings 157
B.2 Shifted and non-shifted radial functions detailed settings . . . 158
B.3 Cutoff radius detailed settings 158
B.4 Angular functions and four radial functions detailed settings . 159
B.5 Additional angular models with variable number of radial

functions . 159
B.6 Additional angular and radial models detailed settings 160

x

List of Figures
1.1 Examples of PES, in one dimension, dimensionally reduced

system, and liquid alloy system, a high dimensional system for
which dimension reduction from Cartesian coordinates is less
obvious. 3

1.2 Single hidden layer, fully connected neural network representation. 10
2.1 Example configurations from Datasets G, B, and D, from left

to right. 21
2.2 Centered and shifted G2 (radial) symmetry functions. 23
2.3 G3 (angular) symmetry functions factors, η = 0. 24
2.4 G2 symmetry functions, five sets of etas, evenly spaced across

interatomic distance. 26
2.5 Best one angular function model. 29
2.6 Best two angular function model. 29
2.7 Parity plot for energy and forces. 31
2.8 Distribution of errors for energy and forces. 32
2.9 Prediction on Dataset B. 32
2.10 Extrapolation on some fingerprints of Dataset B vs. the training

set. (Left: Ni center atoms, Ni radial function with η = 0.02.
Right: W center atom, Al-Ni angular function with λ = −1,
ζ = 1, η = 0.0, cutoff = 12.) 33

2.11 t-SNE representation of 10 MD trajectories from Dataset A
(atomic environments). Worm-like structures indicate atomic
environments are most similar with adjacent MD step. Visual
separation between trajectories indicates sparse coverage of
true potential energy surface. 34

2.12 Parity plot after retraining on additional 5% of Dataset B. . . 35
2.13 Distribution of errors for energy and forces after retraining. . . 35
2.14 Stress parity has RMSE 4.8e-5 Ha/Bohr3. 37
2.15 Al diffusivity for ML potential (left) and AIMD (right). 39
2.16 Ni-W radial distribution function for ML potential (left) and

AIMD (right). 40
2.17 t-SNE representation of W local environments in training data

of final potential. 41
3.1 Icosahedron cluster (13 atoms) with visible five-fold symmetry. 46
3.2 Example of stress autocorrelation data and fit. 52
3.3 Residual fitting error of SACF function minus SACF data using

neural network. 52
3.4 Common icosahedral clusters that contain shared atoms (light

cyan). a): One atom shared (vertex-sharing), 25 total atoms.
b): Two atoms shared (edge-sharing), 24 total atoms. c): Three
atoms shared (face-sharing), 23 total atoms. d): Seven atoms
shared (intercross-sharing), 19 total atoms. 55

xi

3.5 Left: Existing clustering method links by nearest neighbor
bonds, resulting in one cluster. Right: Agglomerative
clustering of this work clusters by shared atoms, two separate
clusters. 55

3.6 Potential energy vs. Temperature shows presence of different
phases. 58

3.7 Volume vs. Temperature in NPT solid-liquid interface
simulations for Al90Si10. 59

3.8 Volume vs. Temperature in NPT solid-liquid interface
simulations for Al95Si5. 59

3.9 Diffusion vs. Temperature for a): Al90Si10 and b): Al95Si5. . . 61
3.10 Diffusion follows Arrhenius equation. 61
3.11 DAl /DSi vs. Temperature for a): Al90Si10 and b): Al95Si5. . . 62
3.12 Viscosity vs. Temperature for Al90Si10 and Al95Si5 compared

with experimental values.106 63
3.13 Two Arrhenius regions for Viscosity for a): Al90Si10 and b):

Al95Si5. Top row plots are residuals of ln viscosity minus
Arrhenius fit. 63

3.14 Deviations in Stokes-Einstein relation for a): at 630 K and b):
at 690 K. 64

3.15 RDFs at different temperatures for Al90Si10. a): Total. b):
Al-Al. c): Si-Si. d): Al-Si. 66

3.16 RDFs at different temperatures for Al95Si5. a): Total. b): Al-
Al. c): Si-Si. d): Al-Si. 66

3.17 Total and partial Coordination Numbers for Al90Si10. 67
3.18 Total and partial Coordination Numbers for Al95Si5. 68
3.19 Common Icosahedron (ICOS) and FCC-like Voronoi

polyhedrons for Al90Si10. 70
3.20 Common ICOS and FCC-like Voronoi polyhedrons for Al95Si5. 70
3.21 Fraction of ICOS Voronoi polyhedron atoms vs. Temperature. 71
3.22 Fraction of FCC Voronoi polyhedron atoms vs. Temperature. . 72
3.23 Local five-fold symmetry vs. Temperature. 73
3.24 Total atoms in clusters and largest clusters vs. Temperature. . 74
3.25 Percent of clusters that last longer than 1 ps vs. Temperature. 74
3.26 Fraction of Al atoms in clusters is higher than Al concentration. 75
3.27 Per-atom diffusion vs. Temperature for a): Al90Si10 and b):

Al95Si5. Diffusions for atoms inside and outside clusters are the
same. 76

3.28 Per-atom viscosity vs. Temperature. Per-atom Einstein
viscosities match with Green-Kubo viscosities. Per-atom
viscosity decreases when atoms in clusters are excluded,
indicating that clusters increase viscosity. 77

3.29 Effective diameter vs. Temperature for Al90Si10 using per-atom
viscosities and diffusion coefficients. a): Atoms in clusters are
removed. b): Atoms in clusters are included. 78

xii

3.30 Effective diameter vs. Temperature for Al95Si5 using per-atom
viscosities and diffusion coefficients. a): Atoms in clusters are
removed. b): Atoms in clusters are included. 79

4.1 Result from Listing 1. 91
4.2 One dimension input NN and confidence intervals. a): 23

training data points, and confidence interval wider at the
edges. b): Region of missing data in middle, and confidence
interval expands in region of missing data. 93

4.3 Three example atom configurations from dataset. 94
4.4 Parity plot of SingleNN. 95
4.5 Distribution of uncertainties (standard error confidence). . . . 95
4.6 Parity plot with 95% prediction intervals for test set. 95
4.7 Prediction on new lattice datasets, uncertainty may be much

larger in an extrapolation region. 97
4.8 The predict-4.0 and 4.1 datasets have fingerprints outside of

range of training distribution (fingerprint example shown is η =
0 with Pd center atoms). 97

4.9 Standard error from delta method vs. absolute error and their
distributions. 98

4.10 Parity plot after retraining. 99
4.11 Distribution of uncertainties after retraining. 100
5.1 Graphical representation of Bayesian regression. 106
5.2 Data for EOS. Shaded region represents data used in training. 114
5.3 Comparison of HMC, Variational inference posteriors and delta

method confidence interval for Pd Poirier-Tarantola. 117
5.4 Gaussian process posterior for Pd EOS. a): function, b): first

derivative, c): second derivative. 119
5.5 Comparison of GP, Bayesian regression, and nonlinear

regression uncertainties with different model predictions for
minimum volume. 120

5.6 Comparison of GP, Bayesian regression, and nonlinear
regression uncertainties with different model predictions for
minimum energy. 121

5.7 Comparison of GP, Bayesian regression, and nonlinear
regression uncertainties with different model predictions for
bulk modulus. 121

C.1 Ni diffusivity for ML potential (left) and AIMD (right). 161
C.2 W diffusivity for ML potential (left) and AIMD (right). 161
C.3 Bulk viscosity for ML potential (left) and AIMD (right). . . . 162
C.4 Shear viscosity for ML potential (left) and AIMD (right). . . . 162
C.5 Ni-Ni radial distribution function for ML potential (left) and

AIMD (right). 163
C.6 Ni-Al radial distribution function for ML potential (left) and

AIMD (right). 163

xiii

C.7 Al-Al radial distribution function for ML potential (left) and
AIMD (right). 164

C.8 Al-W radial distribution function for ML potential (left) and
AIMD (right). 164

C.9 W-W radial distribution function for ML potential (left) and
AIMD (right). 165

C.10 Atomic volume from Voronoi tessellation for ML potential (left)
and AIMD (right). 165

C.11 Average coordination number from Voronoi tessellation for ML
potential (left) and AIMD (right). 166

E.1 Pd Birch comparison of HMC, SVI posteriors and delta method
prediction interval. 169

E.2 Au Murnaghan comparison of HMC, SVI posteriors and delta
method prediction interval. 170

E.3 Au Vinet comparison of HMC, SVI posteriors and delta method
prediction interval. 171

E.4 Au Gaussian process posterior. 172
E.5 Au minimum volume comparison of GP, Bayesian regression,

nonlinear regression uncertainties, and different model
predictions. 173

E.6 Au minimum energy comparison of GP, Bayesian regression,
nonlinear regression uncertainties, and different model
predictions. 173

E.7 Au bulk modulus comparison of GP, Bayesian regression,
nonlinear regression uncertainties, and different model
predictions. 174

xiv

xv

1 Introduction

1.1 Motivation

Materials simulation becomes a further powerful tool with ever increasing

computational power. Simulations are used to calculate material properties

which are difficult to measure experimentally,1–3 and they aid discovery of

new catalysts, drugs, and other materials with target properties by screening

an enormous search space.4–8 Scale of simulations ranges from atomic level to

macroscopic behaviors; with advances in computational power and modeling

techniques, we work toward bridging these scales.

As we make scientific progress in simulations, there are also important

challenges. At the highest level accuracy, simulations are limited to length

scale of nanometers.9 With increasing use of simulations and computer storage,

large amounts of data are generated, and we must efficiently extract their

contained information. The derivation of properties from materials modeling

also begets the question of uncertainty in their calculation.

In this dissertation, we explore the use of machine learning to address

these challenges. We show how observed phenomena in atomic simulation

may explain observable continuum properties. The main results are obtained

using clustering techniques and analyzing large datasets of atomic

configurations. We develop a machine learned potential to accelerate

simulations, integrate it with molecular dynamics, and discuss the associated

opportunities and challenges. Finally we discuss model uncertainty

quantification for parameterized potentials and generally nonlinear regression

models, and Bayesian modeling to obtain uncertainties of physical properties.

The remaining chapter discusses related technical background and

organization of dissertation.

1

1.2 Technical background

1.2.1 Potential energy surface

The potential energy surface (PES) is a central concept in computational

chemistry, and is used to explore atomic structures and chemical reactions.10

The PES is the mapping between the energy and geometry of a system of

atoms. For a geometry of the atomic system r, the energy U(r) is the PES.

We also define the forces as the derivative −∂U
∂r

.

In the simple case of interaction between two atoms, we can express the

geometry in one dimension as the interatomic distance, as shown in Fig. 1.1. In

another example of face-centered cubic (FCC) Au, we can dimensionally reduce

its geometric definition from the Cartesian coordinates to its volume/atom.

The PES for the FCC Au system is also an equation of state and determines the

equilibrium lattice constant. We can often reduce dimensionality of geometric

configuration; another example is O-H bond length and H-O-H bond angle to

fully specify structure of water molecule. However in many systems it is non-

obvious how the Cartesian coordinates can be dimensionally reduced, such as

the case for the liquid alloy system shown.

2

Figure 1.1: Examples of PES, in one dimension, dimensionally reduced
system, and liquid alloy system, a high dimensional system for which dimension
reduction from Cartesian coordinates is less obvious.

There are different methods to obtain the energy for an atomic

configuration. The ab initio method density functional theory (DFT) aims to

determine ground-state energy from the Schrödinger equation. DFT is

versatile, commonly used in physics, chemistry, and materials science, and

considered highly accurate among computational approaches.11 A major

limitation is high computational cost. Physical potentials are based on

physics approximations and have a functional form with parameters to be

fitted, usually to some combination of experimental and/or ab initio data.

As examples, an embedded atom method potential for Ni, Pd fitted functions

of the potential to experimental values including lattice constant and elastic

constants,12 a Reaxff potential for hydrocarbons fitted parameters to their

heats of formation and molecular geometries,13 and angular-dependent

potential fitted parameters to ab initio forces14,15 and another to

combination of experimental and ab initio data.16 The accuracy of the

physical potential at different conditions or on different properties than those

3

used in the fitting process (transferability) is usually not known beforehand.

Physical potentials are also difficult to systematically improve.17 Machine

learned potentials have highly flexible functional forms and are the most

data-driven potential type. We discuss machine learned potentials further in

Chapter 2.

1.2.2 Molecular dynamics simulation

Molecular dynamics (MD) is a simulation method for physical movement of

atoms and molecules. The method dynamically progresses a system of particles

following equations of motion (differential equations) by numerical methods.

MD generates microscopic information (particle positions and velocities), and

the collection of microscopic states follow a statistical ensemble from statistical

mechanics. The microscopic state (microstate) belongs to a phase space which

has 6N dimensions for a system with N particles. The statistical ensemble

is the probability distribution for the states of the system. Tuckerman et

al. have developed a framework for designing MD algorithms to replicate the

desired statistical ensemble.18 Following this, we can obtain some macroscopic

property A (for example potential energy) as an ensemble average. For our

observed property Aobs

Aobs = 〈A〉ens =

∫
Γ

A(Γ)ρens(Γ)dΓ (1.1)

where 〈A〉ens is the ensemble average, Γ is the microstate, and ρens is the

probability density of the ensemble.19 We usually assume that the simulation

4

was run long enough and is able to pass through states at their ensemble

probability (ergodic hypothesis) such that

〈A〉ens = 〈A〉time =
1

T

T∑
τ=1

A(Γ(τ)) (1.2)

where τ = 1, ..., T represents index of times.

The popular ensembles used for MD simulation are microcanonical

(NVE), canonical (NVT), and isothermal-isobaric (NPT). In the

microcanonical ensemble, the system volume, Hamiltonian, and particle

number and composition are conserved. Eq. 1.3 shows the characteristic

equation for NVE.19

mi
d2ri
dt2

= −∂U(r)

∂ri
(1.3)

where mi is mass of particle i, ri is particle i’s position in Cartesian

coordinates (xi, yi, zi), and t is time. The common numerical solution used is

Velocity-Verlet algorithm, shown in Eq. 1.4.20 The algorithm conserves the

system’s total energy.

ri(t+ δt) = ri(t) + δt · vi(t) +
δt2

2

fi(t)

mi

fi(t+ δt) = fi(ri(t+ δt))

vi(t+ δt) = vi(t) +
δt

2

(fi(t) + fi(t+ δt))

mi

(1.4)

where δt represents timestep, vi and fi represent velocity of particle i and

the force acting on it, respectively. The second step in Eq. 1.4 is a force

evaluation using the potential.

The canonical NVT ensemble is meant to replicate experimental condition

with fixed number of particles, system volume and temperature. The equations

5

of motion are usually modified, and a common thermostat is Nose-Hoover

chains.21

Similarly, the isothermal-isobaric NPT ensemble replicates experimental

condition with fixed number of particles, system pressure and temperature.

Again the equations of motion are modified, and Nose-Hoover thermostat,

barostat chains are commonly used.22,23 Tuckerman et al. showed that the

above-mentioned NVT and NPT algorithms replicate their respective ensemble

probability distribution.18

MD in practice

In running an MD simulation, it is advised to decide the purpose of the

simulation, which will determine the most suitable ensemble. As an example,

diffusion calculation is most suited to NVE or NVT ensemble. Next, the

researcher may decide the initial atomic configuration, including number and

composition of particles, and boundary conditions. Periodic boundary

conditions indicate that the image is repeated on a Cartesian coordinate, and

particles can move across a boundary and re-enter from the other side.

Non-periodic boundary is also an option. Some properties may be affected by

number of particles simulated (finite-size effect). Empirical adjustment from

the literature can be used if available, otherwise multiple simulations at

different sizes can be run. The initial conditions such as temperature and

pressure may also be chosen, even for an NVE simulation. The desired

temperature can be used to initialize particle velocities, and the atomic

density can be adjusted to reach the target pressure. Initial configuration

may be read from a data file, or generated in the MD software and

minimized or equilibrated. A particular potential as described in Section

1.2.1 also needs to be selected.

6

Experimental runs are likely necessary to adjust the timestep, thermostat,

and barostat variables if applicable. The timestep cannot be too large or the

simulation will become unstable, and for metal systems timestep of 0.1 to 1.0

fs is typically used. The temperature and pressure should fluctuate around

the set temperature and pressure, and thermostat, barostat variables should

be adjusted so that fluctuations are within an acceptable tolerance.

Short simulations mimicking the planned production simulation are

advised. The researcher can decide which simulation data to collect and at

what frequency. Usually thermodynamic data and particle positions will be

collected at some frequency, and other types of data to collect depend on the

calculations to be performed. For example, mean squared displacement may

be collected for a diffusion simulation. The frequency of data collection

should be balanced with available memory, especially for particle properties.

It is recommended to visualize the thermodynamic quantities throughout the

course of the simulation to check for normal, expected behavior. The

researcher can also visualize the atomic configurations along the trajectory to

behave as expected, using software such as Ovito.24

After initial tests, the production MD run can be set up. The simulation

usually has a minimization, equilibration, and data-collection phase.

Equilibration time depends on the initial configuration and the target system

state. After equilibration, the thermodynamic properties should be stable

and fluctuating around a target.

After the simulation and data collection, the researcher can validate that

the entire trajectory behaves according to the target system. The desired

properties can be calculated and compared with experimental data or other

simulations in literature. Sometimes additional properties may be calculated

and used as validation such as radial distribution functions and coordination

7

numbers for liquids. Repeated production simulations with different initial

atomic configurations and velocities are suggested to report variance of

calculated properties.

1.2.3 Machine learning

Machine learning is the study of algorithms that improve with experience,

measured by their performance on some tasks.25 Experience refers to data;

examples of tasks are classification, regression, clustering; and examples of

performance measures are accuracy for classification and mean squared error

for regression. Some of the main approaches are supervised and unsupervised

learning. In supervised learning, the data is labeled with desired outputs, and

the goal is to learn a model from inputs to outputs. Some tasks in supervised

learning are classification and regression. In unsupervised learning, data is

unlabeled, and the algorithm finds structure within data on its own. Some

tasks in unsupervised learning are clustering and dimension reduction.

An ML model is defined by its mathematical definition and training

dataset. In complex models, the mathematical definition may be best defined

with a computing program (code) and includes the model structure,

parameters, and hyperparameters. The training data is most likely

preprocessed and modified to normalize and standardize them. The ML

models learn from the training data, for supervised learning usually

minimizing an error function on the training data, and for unsupervised

learning running its algorithm on the training data. In parameterized

models, the training process determines the model parameters. We take the

model parameters, the error function, exact training dataset with its

modifications, and all aspects of the model’s mathematical definition to be

the ML model.

8

After a model is trained, we validate it by testing performance on

held-out datasets, usually called test or validation sets. If the model

performs well on training data but poorly on held-out data, the model has

overfit to training data. We typically modify or iteratively retrain models

with additional data to improve performance. Then the model can be used in

production and predict on new data. We want the model to perform well on

new data, i.e. generalize. In real world applications, a common scenario is

that the new data is very different from training data (dataset shift or

extrapolation), and the performance is not good in these cases.26 This

motivates uncertainty quantification for ML models; also we would

continuously update the model over time.

The models used in this dissertation include neural networks (Chapters 2,

3, 4) and Gaussian process (Chapter 5). We used different methods including

Bayesian regression (Chapter 5), agglomerative clustering (Chapter 3),

nonlinear dimension reduction (Chapter 2). We briefly describe neural

networks here and the remaining models and methods in their respective

chapters.

Neural network (NN) is a type of model with a set of computations

performed in order, with ”layers” of matrix multiplications followed by

nonlinear activation. Fig. 1.2 shows a representation of a basic neural

network with input layer, one hidden layer, and output layer. The circles

represent dimensionality of the input and output layers, and number of nodes

of the hidden layer.

9

x a(1)

z(1) a(2)

z(2) p

W (1)

b(1)

W (2)

b(2)

Figure 1.2: Single hidden layer, fully connected neural network representation.

For an input matrix x with n data points and d features, x ∈ Rn×d, we

compute the NN output as:

set x = a(1)

for i = 1, ..., nH :

z(i) = a(i)W (i) + b(i)

a(i) = φ(z(i))

z(nH+1) = a(nH+1)W (nH+1) + b(nH+1)

p = ψ(z(nH+1))

(1.5)

where nH is the number of hidden layers, φ and ψ are activations, and W

and b are weights and biases. W have dimension ”previous layer dimension” ×

”current layer dimension”. In the Fig. 1.2 example, W (1) ∈ R3×4 and W (2) ∈

R4×2. Biases b have ”current layer dimension”; in the example, b(1) ∈ R1×4,

b(2) ∈ R1×2, also p ∈ Rn×2. The activations φ and ψ are applied element-wise

to each element of z. Sigmoid, hyperbolic tangent, rectified linear unit (ReLU)

10

are commonly used functions for φ, and identity and softmax are usually used

for ψ in regression and classification, respectively.

The parameters of the weights and biases matrices are found by

minimizing least squares (regression) or cross-entropy loss (classification)

between NN prediction and data labels. Stochastic gradient descent is

commonly used as the optimization method. For gradient descent methods,

given the loss function L, we need to find ∂L
∂b(i)

and ∂L
∂W (i) . These gradients are

found using backpropagation, a method to efficiently calculate gradients by

using the chain rule, working backwards from the output, and caching

relevant quantities. For example ∂L
∂W (2) = ∂L

∂p
∂p
∂z(2)

∂z(2)

∂W (2) and ∂L
∂b(2)

= ∂L
∂p

∂p
∂z(2)

∂z(2)

∂b(2)

share the terms ∂L
∂p

∂p
∂z(2)

. The earlier layer derivatives

∂L
∂W (1) = ∂L

∂p
∂p
∂z(2)

∂z(2)

∂a(2)
∂a(2)

∂z(1)
∂z(1)

∂W (1) and ∂L
∂b(1)

also have shared terms with the layers

following them, which motivates working backwards through the NN.

Writing the derivatives this way is much easier than taking derivatives of the

NN written as a forward function composition.

Automatic differentiation (AD) in ML software stores the forward

computations as a graph and automatically computes the requested gradients

using backpropragation. We used AD for convenient training of NNs

(example in Chapter 4), calculation of Hessian and gradients (Chapter 4),

Gaussian process derivatives (Chapter 5), and gradient of evidence lower

bound w.r.t. variational distribution parameters in variational inference

(Chapter 5).

One of the main motivations for ML in this dissertation is ML potentials,

which can be orders of magnitude faster than DFT at high accuracy. We

trained NN models on DFT data and integrated them in MD simulation

(Chapter 2). NN and other ML models are also useful as function

approximators, especially when the true function form is unknown. The

11

universal approximation theorem states that a single hidden layer NN with

nonconstant, bounded activation function can approximate any continuous

function arbitrarily well with enough nodes.27 We used NN and GP as

function approximators in Chapters 3 and 5. ML methods such as clustering

(Chapter 3) and dimension reduction (Chapter 2) may also be useful to find

structure of data, and other methods such as Bayesian regression and GPs

can be used to find uncertainty of physical properties (Chapter 5).

Uncertainty

Regarding uncertainty, some ML models are known to extrapolate poorly in

regions of low or missing data. It is nonobvious how to define an extrapolation

region if the ML model has a high dimensional input space. Motivations for

uncertainty measurement are to indicate confidence in model prediction and

help determine when the model is extrapolating, or is simply not reliable. We

can quantify uncertainty using standard error and confidence interval or finding

probability distribution of the quantity of interest. In Chapter 4, we find

standard error of model prediction using the delta method for parameterized

models trained by nonlinear regression, and show examples on atomic systems

and NN potentials. In Chapter 5, we compare uncertainties from delta method,

Bayesian nonlinear regression, and Gaussian process for physical properties

derived from equation of state.

1.3 Organization of dissertation

Chapter 2 describes a motivation of modeling molten superalloys used for

turbine blades. Previous work used ab initio MD (AIMD) to calculate alloy

densities at extremely high computational cost. We conducted extensive

hyperparameter tests and trained Behler-Parrinello NN potentials to model

the system. We iteratively retrained on additional diverse data and

12

integrated the NN with custom MD code. The NN potential gave good

results compared with AIMD in NVT simulation, and we discussed the

challenges faced with the NN potential.

Chapter 3 describes liquid Al-Si system which was studied through

experiment and MD simulation. Experiments found significant hysteresis and

unique microstructures which motivated MD simulations to investigate the

atomic origin of the behaviors, with conflicting results in the literature. We

performed MD simulations with a physical potential at various liquid

temperatures, and found a Stokes-Einstein deviation near the melting point.

We analyzed icosahedral clusters and found that they can explain the

observed Stokes-Einstein deviation.

Chapter 4 describes the delta method for uncertainty quantification. In

contrast to other common methods, the delta method uncertainties can be

found for general classes of models, and completely after a model has been

trained. It works well for models with around 1,000 parameters or less, and

approximations can be made for larger models. We applied the delta method

on simple examples and a NN potential, and show that high uncertainty from

delta method correlates with extrapolative input.

Chapter 5 describes different sources of uncertainty in modeling

experimental data and presents an analysis comparing methods for the

uncertainties they capture. We examine physical properties derived from

bulk equation of state model, and three methods of modeling and their

uncertainties. To find uncertainties with quantities involving function second

derivatives, we develop a Gaussian process with joint over function, first and

second derivatives. We show that the uncertainties from our nonlinear and

Bayesian regressions are parameter uncertainties while Gaussian process

variance includes model selection uncertainty.

13

In Chapter 6, we conclude and discuss future directions.

14

2 Machine Learned Potentials for Complex

Alloy Systems

2.1 Introduction

There is an increasing demand for energy and efficient power generation.

To improve efficiency, turbines and engines are operated at higher

temperatures and pressures. A challenge is finding materials, for the turbine

parts, that remain chemically and mechanically stable at the conditions.

Currently, superalloys of Ni, Al, W, Re and other elements are used.

Superalloys make up turbine engine blades and jet engines. Operating

conditions reach temperatures over 1000 °C and pressures over 5000 psi, for

high efficiency. The Ni based superalloys are one of few materials that

remain structurally stable at these conditions. However, the manufacturing

process of the turbine blades may introduce defects. Manufacturing the

blades is expensive and involves pouring molten alloy into a mold and

cooling it. The cooling process is difficult to experimentally probe and

monitor, and thermodynamic data is limited. In addition, the airfoil

geometry and compositional chemistry are becoming more complex,

increasing the risk of defect formation. Therefore, quantitative models are

needed for understanding the properties of this system.28–32 An accurate

model can be used to optimize the alloy processing and predict conditions

leading to defect formation.

In previous work, the superalloy model used molecular dynamics (MD)

simulation based on density functional theory (DFT). The model accurately

predicted molar volumes and diffusion data, compared with available data.28

However, DFT calculations made the simulations very slow. One nanosecond

15

of cooling a few hundred atoms required one million CPU hours, equivalent

to 1,000 single core computers working for 42 days. The computational time

limits the number and complexity of the simulations. For example, it is

desirable to simulate larger systems to increase accuracy with respect to the

trace elements that are present.28 It is clear that a faster calculation is

necessary to more effectively model the system.

2.1.1 Machine learned potential

An atomistic potential to calculate total energy and forces is necessary

for the MD simulation. DFT is one option, which is accurate but

computationally slow. Classical, physics-based potentials, such as

Lennard-Jones or ReaxFF, have also been used. They are fast but may lack

the required accuracy, and are not systematically improvable.17 Machine

learned (ML) potentials are fast, flexible mathematical models which

approximate DFT calculations at high accuracy.33,34 Previous work with ML

models is promising; they were successfully incorporated into MD

simulations at the necessary level of accuracy, while speeding up

computational time by four orders of magnitude.35–38

An ML potential requires a mathematical form and a representation of

the configuration of atoms, called a fingerprint. The ML potential also

requires training data, which is used to fit its parameters by minimizing an

error metric, a process called training. The mathematical form, fingerprint,

and data are selected so that the ML potential is accurate for the atomic

configurations present in the simulation. The next sections discuss

background on ML potentials and considerations when selecting the model,

fingerprints, and data.

16

2.1.2 ML potential form and fingerprints

There are many possible mathematical forms and fingerprints for ML

potentials. One commonly used method is neural network (NN) with

Gaussian fingerprint proposed by Behler and Parrinello (BP).39 Examples of

other methods are Gaussian process regression with ”smooth overlap of

atomic positions” (SOAP) kernel presented by Bartok et al.,40 linear

regression,41 kernel ridge regression,42 and k-nearest neighbors.43 In addition,

there are many proposed fingerprints including Zernike, Coulomb matrix,

bag of bonds.43

Fingerprints are used because they have desirable properties for ML

models as opposed to Cartesian coordinates (properties such as invariance to

translation, rotation, and atomic permutation). Fingerprints can be

atom-centered (local) or global (describing the entire configuration).

The ML model and fingerprint should be selected such that the ML

potential is accurate over the variety of atomic structures appearing in the

simulation. This work focuses on the BP NN potentials. BP NN potentials

use local energy contributions from each atom and a separate NN for each

chemical element. The NNs output atomic energies, and summing over them

gives configuration energy. The flexibility of NNs allows the potential to be

accurate for the diversity of structures appearing in the superalloy

simulation. Another benefit of BP NN potentials is that the model

complexity can be easily adjusted, by changing the structure of the NN, and

consequently the number of parameters.

This work uses G2 and G3 fingerprints.44 G2 fingerprints are essentially a

coordination number weighted with exponential decay, and G3 fingerprints

capture information about triplet configurations of atoms and inter-atomic

bond angle. The dimensionality of the fingerprint needs to adequately

17

differentiate structures in the simulation, but using fingerprints with higher

dimensionality requires more training data and time. As an example, Botu et

al. found that local fingerprint vector size of eight worked well for the

application of bulk and surface Al.42

2.1.3 Training data for ML potentials

In the course of an MD simulation, there will be structures which were

not present in the ML potential’s training dataset. To be useful, the ML

potential needs to be generalizable, i.e. to accurately predict energies and

forces for the new structures. Therefore, it is critical that the training

dataset includes atomic structures that are representative of those in the MD

simulation.26,45 In addition, generating training data with DFT could be

computationally expensive, so it is important to carefully consider the type

and amount of training data necessary. This section will describe current

methods of selecting training data and interpreting similarity between atomic

configurations.

Selecting training data

Many potentials are trained using MD simulation data.42,46 Often, the

type and number of training data for potentials is chosen based on empirical

experience and observed success in predictions.47 There are automatic data

generation methods proposed using random structure searching,48

evolutionary sampling,26 and active learning.49 The active learning method

proposed by Smith et al. decreased the necessary training data by 90% and

decreased the potential’s error in an example with organic molecules.49 This

work uses data from MD simulations, but the other data generation methods

could be considered in future work.

18

Interpreting similarity between configurations

Defining similarity between configurations in the simulation and the

training set is nonobvious, because there are many degrees of freedom and

therefore high dimensionality. This is an active area of research with many

different proposed measures of similarity between atomic environments.50–53

Dimension reduction often assists with clustering similar data and

interpreting the input space. Cubuk et al. use a dimension reduction method

(t-distributed stochastic neighbor embedding (t-SNE))54 on layers of a neural

network, and the transformation of data in some layers was able to cluster

different phases of Si.55 Another dimension reduction technique is

sketch-map, specifically designed to overcome uneven distribution of states

from molecular dynamics trajectories.56,57 This work uses some dimension

reduction techniques to interpret similarity between the data.

Data sampling schemes

Previous experiments have shown that different training data sampling

schemes lead to varying errors in ML potentials. Lorenz et al. tested varying

density meshes (dense grid, high-symmetric configurations, enhanced lateral

grid) from a potential energy surface (PES). The training data scheme varied

the NN potentials’ error from low error to unacceptably high error.58 Other

experiments tested random vs. farthest point sampling (FPS),59 and random

vs. force binning vs. clustering.45 They found that random sampling generally

under performs. These examples show that the number and configuration of

training data make a significant difference in ML potential accuracy. This

work also tests sampling methods and relates them to the resulting accuracy

and uncertainty of the ML potential.

19

2.1.4 Objectives

The objective of this work is to create a NN potential which accurately

predicts energies and forces for molten Ni-Al-W. We determine efficient and

accurate hyperparameters and training procedures, and integrate the

potential in MD simulation. To ensure the model does not extrapolate

during the simulation, we need to fit the model with enough configurations

to cover the potential energy surface. We show how quantitative uncertainty

and data visualization aid in model development.

2.2 Methods

2.2.1 Data

The data used in this work are MD trajectories generated using DFT

calculations and VASP.60 DFT calculations were run by Prof. Widom and

Dr. Bojun Feng. The DFT data were generated from temperatures varying

from 1720-4000 K, different volumes, number of atoms from 32-500, and

some varied compositions around the proportions Ni25Al5W2. Table 2.1

shows the details of the datasets, and additional details about the source of

the data is in Appendix A. Fig. 2.1 shows example configurations. Datasets

E and G were generated through Monte Carlo MD (MCMD).

20

Table 2.1: Dataset descriptions. No. atoms indicates number of atoms per
structure. Stress column indicates if stress data is available in dataset.

No.
Atoms

No.
Structures

Composition Stress Description

A. 32 13,000 Al5Ni25W2 No T=4000 K;
high, low, medium
volumes

B. 500 400 Al70Ni415W15 Yes subgroups:
mcmd 2080,
mcmd 2710,
swf0 1, swf0 7

C. 64 684 Al9Ni52W3 No T=2000 K
D. 96 150 Al14Ni77W5 Yes T=2000 K;

high, low, medium
volumes

E. 96 3,250 Al14Ni77W5,
Al12Ni79W5,
Al16Ni77W3,
Al17Ni73W6

Yes T=2200 K;
high, low, medium
volumes

F. 500 3,000 Al70Ni415W15 Yes
G. 32 15,960 Al5Ni25W2 Yes four volumes

Figure 2.1: Example configurations from Datasets G, B, and D, from left to
right.

2.2.2 Software

The ML potentials were trained to minimize both energy and force errors

using the Runner software33,44 and Gilgamesh computing cluster. The MD

simulations were custom Fortran codes run by Dr. James Lill.

21

2.2.3 ML potential hyperparameters

We performed experiments to search for optimal setup of NN structure and

symmetry functions. In machine learning terminology, this could be called a

”hyperparameter search”. In these experiments we used a constant set of

training data (subset of Dataset A of Table 2.1), which were 2,080 snapshots

of 32 atom cells and constant Ni25Al5W2 composition. Out of these 2,080

points, 90% were randomly used for each training, and 10% were reserved as

the validation set. We used global symmetry functions, meaning the symmetry

function setup was repeated for all element combinations. Unless otherwise

noted, the NN had (11, 11) nodes with sigmoid activation, symmetry function

cutoff radius was 12 Bohr, and results were for 100 epochs of training. In

addition, symmetry functions were centered around zero, and energy and force

training were used with automatic scaling factor for forces. All energy RMSE

are Ha/atom, and all force RMSE are Ha/Bohr.

Eq. 2.1 shows the form of the G2 symmetry function, Eq. 2.2 shows G3

symmetry function, and Eq. 2.3 shows the cosine cutoff function. In Eq. 2.2,

21−ζ is a normalization constant. Fig. 2.2 shows the value of the symmetry

function for an atom of Rij distance from the center atom, using a 12 Bohr

cosine cutoff. Larger η results in faster decay as expected, and Rs changes

the location of the G2 value peak. Fig. 2.3 shows example angular factors of

the G3 symmetry function, specifically 21−ζ [(1 + λ · cos θijk)
ζ], as a function

of the interatomic angle θijk. We see that larger ζ contributes to sharper,

narrower peaks, and λ changes the location of the peak. For our

hyperparameter studies, we checked the number of radial (or pairwise)

functions, shifted and centered radial functions, nodes of the NN, cutoff

radius, and angular functions. In selecting combinations of G2 and G3

symmetry functions, we visualized factors such as in Figs. 2.2 and 2.3 to

22

decrease overlap or correlation between symmetry functions. We also selected

symmetry function parameters to avoid ”low variance” symmetry functions,

as an example, an all-zero G2 symmetry function when η is overly large.

G2
i =

Natom∑
j=1

e−η(Rij−Rs)2 · fc(Rij) (2.1)

G3
i = 21−ζ

∑
j 6=i

∑
k 6=i,j

[(1 +λ · cos θijk)
ζ · e−η(R2

ij+R
2
ik+R2

jk) · fc(Rij) · fc(Rik) · fc(Rjk)]

(2.2)

fc(Rij) =


0.5 ·

[
cos
(
πRij
Rc

)
+ 1
]
, for Rij ≤ Rc

0.0, for Rij > Rc

(2.3)

Figure 2.2: Centered and shifted G2 (radial) symmetry functions.

23

Figure 2.3: G3 (angular) symmetry functions factors, η = 0.

2.2.4 Efficient training

To train the ML models efficiently, it is desirable to use less training data

to save training time. However, using less training data increases the

generalization error. MD trajectories exhibit autocorrelation, and each atom

configuration is most similar to its adjacent MD step. An efficient sampling

scheme is to sample every n steps, where n can be adjusted to reach the

target accuracy on the validation dataset. In a simple experiment, we showed

that n-th step sampling is more efficient than random sampling. Using n-th

step sampling for four MD runs, the training data has 48 points (12%), while

validation has 352 points (88%). The resulting NN potential has a train

mean absolute error (MAE) of 0.0008 eV/atom, and validation MAE of

0.0009 eV/atom. In comparison, including the first and last images and

randomly sampling 10 points from each MD run (48 total points) results in a

train MAE of 0.0007 eV/atom, and a validation MAE of 0.0027 eV/atom.

Both potentials have the same fingerprints and (2, 2) NN structure. The n-th

step sampling is more efficient because it had lower validation error than the

random sampling case. In many machine learning applications, 60-80% of the

overall data is used as training data. Using less than 20% of the data as train

data is surprisingly efficient and useful for saving train time.

24

2.3 Results

In this section, we discuss the results from the hyperparameter study. We

then discuss the evaluation of the ML potential, including using it to predict on

new datasets. To increase diversity of atomic environment in the training data,

we iteratively retrain the potential with new data. We discuss the challenges

and solutions of integrating the potential with MD simulation and compare

the MD simulation results between ML potential and AIMD.

2.3.1 Hyperparameter study

We want to quantify the impact of various parameters on potential

performance. We ran experiments testing the radial functions parameters,

shifted and non-shifted radial functions, NN architectures, cutoff radius, and

angular functions. The exact settings of the models are in Appendix B.

Number of radial functions

For these experiments, we used only non-shifted radial functions (G2),

and varied the number of radial functions. We chose the etas to be spaced

evenly across a range of interatomic distance, as an example in Fig. 2.4.

Table 2.2 shows the validation energy and force errors and training time.

The accuracy improves when radial function sets increase to four. Using

three radial functions or more than 10 was less stable for training (sometimes

the error would become infinitely large). The error does not improve from 4

to 6 sets of radial functions, but train time increases. Therefore, four sets of

radial functions are recommended.

25

Figure 2.4: G2 symmetry functions, five sets of etas, evenly spaced across
interatomic distance.

Table 2.2: Number of non-shifted radial functions

No. of sets
G2

Val. Energy
RMSE (Ha/atom)

Val. Force
RMSE (Ha/Bohr)

Time
(hrs)

1 0.00109 0.0165 1.0
2 0.00032 0.0049 1.4
3 0.00354 0.1819 1.6
4 0.00019 0.0045 2.1
5 0.00018 0.0044 2.7
6 0.00018 0.0043 7.6
9 0.00022 0.0059 5.0
10 0.01108 0.4438 3.1

Shifted and non-shifted radial functions

In this set of experiments, we tested shifted radial functions, and

combinations of shifted and non-shifted radial functions. Each model had

four total sets of radial functions. The combinations of functions were

selected to try to span the distances between atoms (Rij). Table 2.3 shows

the results. The best results with shifted functions reach the same level of

error as all non-shifted functions from Table 2.2. From the experiment

results, the shifted functions do not make the potential significantly more

accurate. Shifted functions are more difficult to select as some of them make

26

the training unstable. Therefore, non-shifted radial functions are

recommended over shifted radial functions.

Table 2.3: Shifted and non-shifted radial functions

No. Model Val. Energy
RMSE

Val. Force
RMSE

Time
(hrs)

1 4shift 0.00028 0.0076 3.6
2 1eta-3shift 0.00110 0.0337 5.2
3 2eta-2shift 0.00019 0.0062 2.2
4 2eta-2shift 0.00019 0.0057 2.2
5 3eta-1shift 0.00017 0.0053 2.5
6 3eta-1shift 0.00018 0.0045 2.4
7 4eta 0.00025 0.0045 2.3

Neural net nodes

We tested three different NN structures on the same set of fingerprints.

The fingerprints were four sets of non-shifted radial functions with η = 0,

0.03, 0.08, 0.25. Each NN had two hidden layers with the number of nodes

in each hidden layer shown in Table 2.4. When nodes increase from 8 to 11,

accuracy increases a small amount, and train time increases a small amount.

Increasing nodes from 11 to 15 increases accuracy a small amount, but train

time increases significantly. Therefore 11 or 8 nodes is recommended.

Table 2.4: Neural network nodes

NN nodes Val. Energy
RMSE

Val. Force
RMSE

Time
(hrs)

8 0.00022 0.0042 1.8
11 0.00019 0.0045 2.1
15 0.00014 0.0047 4.2

Cutoff radius

We changed the cutoff radius, while using four sets of non-shifted radial

functions. From Table 2.5, when the cutoff radius is decreased to 8 Bohr, the

error is still low and training is slightly faster. Increasing cutoff radius to 14

27

Bohr did not improve accuracy and made training less stable. Therefore, it

is recommended to use 8 or 12 Bohr cutoff radius, and 8 Bohr cutoff radius

would require more experiments and tests.

Table 2.5: Cutoff radius for symmetry functions

Cutoff radius
(Bohr)

Val. Energy
RMSE

Val. Force
RMSE

Time
(hrs)

8 0.00024 0.0042 1.8
9 0.00030 0.0061 1.9
12 0.00019 0.0045 2.1
14 0.00206 0.0594 2.4

Angular functions

We tested various combinations of angular functions, and Table 2.6 shows

the successfully trained models that had angular functions and four radial

functions. For all of the angular functions used, λ was 1 or -1, ζ varied from

1 to 24, and η was 0. With one angular function, the best performing angular

function (used by Model 1 in Table 2.6) is shown in Fig. 2.5. With two angular

functions, the best performing angular functions (from Model 6 in Table 2.6)

are shown in Fig. 2.6. We found that angular functions with sharper peaks

near 180° did not improve accuracy compared with the angular function in

Fig. 2.5, meaning ζ values > 1 when λ = −1 were not as helpful. Also,

picking up variation in angles around 0° was helpful for decreasing error, as

shown in Fig. 2.6. Therefore when λ = 1, angular functions with large values

of ζ were more helpful. Model 6 of Table 2.6 appeared to have decreasing

error after 123 epochs, so we trained it for an additional 100 epochs, which

required another 8.6 hours and reached validation energy RMSE 0.00009 and

force RMSE 0.0047. This was the lowest energy error among all of the models,

but there may be other models that reach similar accuracy with faster train

time. Generally, angular functions are more difficult to select, make training

28

less stable, and take longer to train. For these reasons, angular functions

are not recommended unless it is clear that a specific angular function would

significantly improve the ML potential.

Figure 2.5: Best one angular function model.

Figure 2.6: Best two angular function model.

Table 2.6: Angular functions and four radial functions

No. Model Val. Energy
RMSE

Val. Force
RMSE

Time
(hrs)

Epochs

1 1ang 0.00019 0.0062 5.1 100
2 1ang 0.01229 0.5221 4.6 100
3 1ang 0.00057 0.0190 5.6 100
4 1ang 0.00027 0.0089 5.3 100
5 2ang 0.00098 0.0321 8.3 105
6 2ang 0.00012 0.0049 8.5 123
7 2ang 0.00019 0.0111 8.9 100
8 4ang 0.00116 0.0398 15.0 112
9 4ang 0.00068 0.0234 15.1 100

29

Recommendations from hyperparameter study

The results from the hyperparameter study quantified the effect of

different radial functions parameters, shifted and non-shifted radial functions,

NN architectures, cutoff radius, and angular functions. The symmetry

functions were selected manually with aid from visualization, and visualizing

them is recommended. Increasing the NN nodes, number of radial functions,

and including angular functions decreased error, while also increasing train

time. Between alternative models, the errors sometimes differed significantly,

even by two orders of magnitude. This indicates that experimentation with

the hyperparameters, especially the combination of symmetry functions, is

necessary for a low-error potential. The hyperparameter study would likely

need to be repeated for a different atomic system, i.e. the best

hyperparameters here do not necessarily transfer to a different system.

Parallel random search methods with early stopping could be utilized to

automate the hyperparameter search in future work.61 We noticed that within

a few epochs of training, it may be obvious that a particular configuration

results in high error and training can be stopped early to start an alternate

configuration. Automating the hyperparameter search requires ability to stop

and start jobs based on logic, and integration with Runner or another training

framework.

2.3.2 ML potential training and evaluation

After training an ML potential, we evaluate its performance. Fig. 2.7

shows the energy and force parity plots for Model 1 of Table 2.6. The train,

validation, and test datasets were all from Dataset A of Table 2.1. Train,

validation, and test datasets had 1,877, 203, and 10,920 structures,

respectively. The energy root mean squared errors (RMSE) were 0.00015,

30

0.00018, 0.00017 Ha/atom and force RMSEs were 0.0061, 0.0062, 0.0061

Ha/Bohr for train, validation, and test sets, respectively. In particular, the

errors are about the same across the three datasets. We would not want to

see the test or validation error much higher than train error, a clear sign of

overfitting. Fig. 2.8 shows the distribution of errors. For the three datasets,

the errors appear centered around zero and normally distributed.

Figure 2.7: Parity plot for energy and forces.

31

Figure 2.8: Distribution of errors for energy and forces.

Although the ML potential achieved low error for Dataset A, we now

evaluate its prediction on a separate dataset. This is more indicative of the

ML potential’s performance in an MD simulation, since the simulation may

encounter structures significantly different than the training data. Fig. 2.9

shows the energy and force parity plots for Dataset B. The energy and force

RMSEs are 0.0039 Ha/atom and 0.0066 Ha/Bohr, respectively. In particular,

the energy error is much higher than errors for the train, validation, and test

sets.

Figure 2.9: Prediction on Dataset B.

The potential seems to be extrapolating on Dataset B. We observe the

fingerprint distributions, and Fig. 2.10 shows the distributions of two example

32

fingerprints for Dataset B and the training data. Dataset B configurations

have fingerprints in ranges outside of the training data, which indicates new

atomic environments not present in the training data and extrapolation.

Figure 2.10: Extrapolation on some fingerprints of Dataset B vs. the training
set. (Left: Ni center atoms, Ni radial function with η = 0.02. Right: W center
atom, Al-Ni angular function with λ = −1, ζ = 1, η = 0.0, cutoff = 12.)

We visualize the local atomic environments of 10 MD trajectories, with

100 steps each, from Dataset A. The fingerprint vector of each atom in 1,000

configurations was dimensionally reduced using t-SNE, and Fig. 2.11 shows

the result. The ”worm”-like structure corresponds with a local environment

through one MD trajectory. This indicates that the atomic environment is

most similar to its adjacent MD step, and that the finite number of MD

trajectories covers an extremely small portion of the true potential energy

surface. The visualization further indicates that the potential needs to be

trained with more data.

33

Figure 2.11: t-SNE representation of 10 MD trajectories from Dataset A
(atomic environments). Worm-like structures indicate atomic environments
are most similar with adjacent MD step. Visual separation between
trajectories indicates sparse coverage of true potential energy surface.

To improve the ML potential performance, we added 5% of Dataset B to

the training data and retrained. Fig. 2.12 shows the energy and force parity

plots after retraining, and Fig. 2.13 shows the distribution of errors. The

updated energy and force RMSEs for Dataset B are 0.00015 Ha/atom and

0.0059 Ha/Bohr, respectively. The errors reached the same level as Dataset

A’s. We showed that adding a small amount of new data and retraining allows

the potential to be accurate for the entire dataset. In this sense, the ML model

is systematically improvable.

34

Figure 2.12: Parity plot after retraining on additional 5% of Dataset B.

Figure 2.13: Distribution of errors for energy and forces after retraining.

35

2.3.3 Integration with MD simulation

The process of training, validating the ML model, and adding varied

training data was repeated several times. Intermediate models were used in

MD simulation and would sometimes extrapolate to unphysical results. In

these cases, it was clear that the potential required training on additional

data. In effort to increase diversity of atomic environments, we added data

with different stresses, volumes, compositions, higher temperatures, and

larger number of atoms per structure. Table 2.7 shows the updates made

starting from Model 1 of Table 2.6. For each iteration, we started retraining

with optimal weights from the previous model. Usually starting with the

previous best parameters gave better results than starting with random

weights. Table 2.7 also shows other updates to the model, usually to aid

integration with the MD simulation. In Model Iteration 4, we changed the

force scaling factor to 1.0 to decrease force error, which had the intended

effect. In Model Iteration 6, we removed the W-W angular function because

it was zero for all atoms. This is because W is sparse in chemical

composition and a triplet of W atoms is highly improbable. We found that

Runner always scales symmetry functions for its stress prediction, and

therefore including the W-W angular function resulted in infinite stress

prediction, which negatively impacted the MD simulation results. In Model

Iteration 6, we also scaled symmetry functions to improve the stress

prediction, as scaling is consistent with Runner’s stress calculation. This

change reduced the stress RMSE from 0.025 to 4.8e-5 Ha/Bohr3, which

greatly improved the stability and reasonableness of the MD simulation. Fig.

2.14 shows the stress parity of 500 random test structures (100 each from

Datasets with stress) for Model Iteration 6. In future work, stress training

could be included to further decrease the stress error.

36

Table 2.7: Iterative retraining of model

Iteration Training Data (No. Structures) Updates

1 Dataset A (1,877)
2 + Dataset B (16)
3 + Dataset C (33)

+ Dataset D (14)
4 + Dataset E (152) Changed force scaling factor

from default to 1.0, trained
300 epochs

5 + Dataset F (259) Force scaling factor is default
6 Final: Dataset A (1,877),

Dataset B (16), Dataset C
(18), Dataset D (14), Dataset
E (152), Dataset F (259),
Dataset G (1,440)

Removed W-W angular
function, scale symmetry
functions, force scaling factor
is 1.0

Figure 2.14: Stress parity has RMSE 4.8e-5 Ha/Bohr3.

The final model of Table 2.7 showed high accuracy on all of the datasets

and ran in NVT simulation for over 105 fs. The training set contained 3,776

structures. The potential achieved RMSEs of 0.00029 Ha/atom energy and

0.0036 Ha/Bohr forces for both its training and validation sets. The symmetry

functions were four sets of non-shifted radial with η = 0.02, 0.05, 0.10, 0.35,

and angular function set with λ = −1, ζ = 1, η = 0.0, excluding the W-W-W

angular function. Symmetry functions were centered and scaled. The cutoff

37

radius was 12.0 Bohr. NN had 2 hidden layers with 11 nodes each and sigmoid

activation.

We ran a NVT simulation with 500 atoms at 1720 K using Nose-Hoover

thermostat. The ML potential raised extrapolation warnings when a

fingerprint is outside of its range from the training data. With a stable NVT

simulation, we still see around 1,000 extrapolation warnings at each time

step. As such, the extrapolation warnings provide limited information in

determining the reliability of the ML potential in simulation, and this

motivates a need for uncertainty quantification.

We calculated diffusivities using Green-Kubo and Einstein formulas, and

compared with AIMD. As an example, Fig. 2.15 shows the Al diffusivities.

The uncertainties for the diffusivity estimates are smaller for the ML potential

than AIMD. The Green-Kubo and Einstein diffusivities do not exactly match

for the ML potential, at maximum differing by 1 cm2/s, while they do match

for AIMD. The diffusivities calculated by these methods should match and

indicates the correctness of the simulations.62 Since they match for AIMD but

not the ML potential, it may indicate that the ML potential’s fitting errors

are not low enough, or some setting in the MD simulation is inconsistent with

the ML potential. This can be tested in future work. The ML potential’s

calculated diffusivities are higher than AIMD’s, sometimes by a factor of two,

but still the same order of magnitude.

38

Figure 2.15: Al diffusivity for ML potential (left) and AIMD (right).

We calculated bulk and shear viscosities using Green-Kubo and Einstein-

Helfand formulas, and compared them with AIMD. For both viscosities, the

ML potential had smaller uncertainties than AIMD, and the ML potential

viscosities were smaller, sometimes by a factor of two, but in the same order

of magnitude.

We made radial distribution function (RDF) plots for the ML potential

and AIMD. The radial distribution functions and location of peaks generally

matched between the ML potential and AIMD. There was more scatter on

the RDFs from the ML potential and for dilute pairs, and the peak heights

were higher. As an example, Fig. 2.16 shows the Ni-W RDF. The atomic

volumes and atomic coordination matched between the ML potential and

AIMD, with the ML potential having less uncertainty. Additional figures

comparing simulation results between ML potential and AIMD are in

Appendix C.

39

Figure 2.16: Ni-W radial distribution function for ML potential (left) and
AIMD (right).

We visualized the final ML potential training data using t-SNE, as shown

in Fig. 2.17. Here we included all training data from Datasets A-G except

for one-tenth of Dataset F, and visualized the W local environments. We

considered W because it is sparse and therefore less covered in the PES. In

Fig. 2.17, there are still visible gaps in the 2-D visualization, while there are

fewer gaps if we visualize Al or Ni local atomic environments. The gaps could

mean that our datasets have not covered the complete PES or that there are

regions of fingerprint space that are not energetically favorable. We believe

that we still need more data because the current potential became unstable

during NPT simulation. This could be tested by continuing to generate data

and iteratively training the potential, especially with NPT simulation. We

color coded by Dataset A/B/. . . /G. The colors are mostly overlapping, which

indicates that this separation among datasets is not necessarily the best way to

delineate the fingerprint space. We also tried separating data by volume and

temperature but did not notice clear separations in those cases either. Partial

40

coordination number is another possibility to test delineating the fingerprint

space in future work.

Figure 2.17: t-SNE representation of W local environments in training data
of final potential.

As previously mentioned, to run the ML potential with NPT simulation,

we would need to increase the training dataset diversity. The current

potential was stable in NPT simulation for the first 3,500 fs and then

accumulated too many extrapolation warnings and became unstable. The

current potential is also reaching a plateau of accuracy. In future work, the

potential would probably require more NN nodes. In training the final

potential, one update of potential weights required about 50 minutes, which

would be even longer if the NN had more nodes. Options that could speed

up training are training on GPU or parallelizing the optimization algorithm

which would also require changing the algorithm. An example of an easily

parallelizable algorithm is stochastic gradient descent. Further research could

also determine better ways to select data for training. If we increased the

number of species in the liquid alloy simulation, we would likely implement a

different style of symmetry functions because the current scheme of

symmetry functions increases quadratically with number of atomic species.

Currently Runner only implements these BP symmetry functions described.

41

We found that changing the chemical system changes the optimal symmetry

function and NN setup, and we could develop an automated search for the

optimal setup.

2.4 Conclusions

In this chapter, we discussed building the ML potential for molten

Ni-Al-W. We started with a hyperparameter study, which quantified the

impact of various radial and angular symmetry functions, NN nodes, and

cutoff radius on the resulting potential’s error. Experimenting with different

symmetry function setups is recommended for a new system because the

resulting potentials can vary greatly in their errors. After training an ML

potential, we evaluated its performance on test datasets and more diverse

datasets. In the early iterations, the ML potential extrapolated on the new

datasets. We added a small amount of the new datasets and retrained the

potential, which resulted in low errors for the entire dataset. These findings

motivated the process of iterative training as a means to explore the

potential energy surface and increase atomic environment diversity in the

training data. After several rounds of iterative retraining, we created a

potential which worked well in MD simulation for over 105 fs. In order to

integrate the ML potential with MD simulation, we wrote new custom codes

and made modifications to the potential over several rounds of debugging.

The simulation results showed good agreement between ML potential and

AIMD in terms of radial distribution functions, diffusion constants, and

viscosities. During the stable MD simulation, the ML potential still

generated extrapolation warnings, indicating a need for a better measure of

model reliability or uncertainty. We also found that searching the dataset

space was challenging, and knowing what data to select for training and

when the model would extrapolate was nonobvious. These factors also

42

motivate the quantitative uncertainty for ML potentials and similar models.

In future work, we need to continue improving the dataset diversity and ML

potential accuracy to run stable NPT simulation for this system. The lessons

learned about hyperparameter selection, building up the dataset and

iterative retraining, and challenges of integrating the ML potential with MD

simulation can be applied to future studies in this domain.

43

3 Origin of the Stokes-Einstein Deviation in

Liquid Al-Si

3.1 Introduction

Simulation of materials on multiple length scales is useful to calculate

different properties. On the larger continuum length scales, we measure

viscosity, density, and may observe hysteresis.63 At the smallest scale, we

simulate atom interactions, using first-principles density functional theory or

atomic potentials. One goal is pushing the time and length scale boundaries

of atomic simulations and finding relationships between atomic scale and

continuum properties.

The Stokes-Einstein equation relates diffusion and viscosity in liquids, an

example of relating individual particle properties (diffusion) with the

continuum (viscosity). The Stokes-Einstein relation (SER) is shown in Eq.

3.1, and states that the effective diameter d is constant with the ratio T
Dη

where T is temperature, D is diffusion, and η is viscosity. The related

fractional Stokes-Einstein (FSE) in Eq. 3.2 is shown to hold for many

liquids.64 Values of the exponent κ usually fall between 0.6 and 1. The FSE

with κ = 1 is equivalent to SER, while other values of κ result in a

non-constant effective diameter over temperature, or SER breakdown.

d =
kBT

2πηD
(3.1)

D

T
∝
(

1

η

)κ
(3.2)

There has been much interest in the SER for various liquids including

water,65 liquid metals and alloys,62,66,67 and micelle system.68 The SER does

44

hold for many liquids within a temperature range, however when it holds or

breaks down in specific systems is an active area of research. Differing

hypotheses for breakdown have been proposed without a consensus

reached.69,70 Some hypotheses are local microviscosity differing from bulk

viscosity,70 increase in local five-fold symmetry and icosahedral clusters,71

and dynamic decoupling/heterogeneity or large difference in self-diffusion of

chemical species.72,73 Besides understanding liquid particle and continuum

properties, the SER has a practical use of estimating diffusion from viscosity

or vice versa as they can be difficult to measure experimentally.74

The derivation for SER arises from Einstein relation of Brownian motion

and Stokes’ law for Stokes flow.75 The assumptions for the Einstein relation

are independent particle motion and velocities of particles following

Maxwell-Boltzmann distribution. These assumptions result in Brownian

motion or random particle motion. The assumption for Stokes flow is

spherical particles in low Reynold’s number or smooth, non-turbulent flow.

From these assumptions, it seems that the SER may break down if particles

have strongly directional interactions (non-random motion) or large clusters

formed in the liquid (non-spherical particles).

We have an interest in computational models of liquid alloys, as

metallurgical processes are moving towards systemization and optimization

via simulation. There are many behaviors which are important to understand

for alloy processing. These include non-ideality (when entropy of mixing is

far from the ideal entropy), hysteresis, local order or short-range order,

differences in local densities, and SER holding for liquid but breaking down

at low temperatures. Some studies of various alloys found SER breakdown at

low temperatures,69,71,76 and researchers also found onset of clustering/local

order.71,76 Li et al. found that chemical short-range order is not a universal

45

indicator of SER breakdown, but attributed the SER breakdown to rapid

increase in five-fold symmetry and icosahedron cluster formation.71 Five-fold

clusters were found in liquids,77 and five-fold symmetry indicated dynamic

slowdown in liquid glasses.78 Fig. 3.1 shows an icosahedron cluster, and the

five-fold symmetry around the center atom is visible.

Figure 3.1: Icosahedron cluster (13 atoms) with visible five-fold symmetry.

This work focuses on Al-Si because it is a commonly used alloy in

automotive, aerospace, and electronics applications, and demonstrated

unusual macro-properties. Studies showed hysteresis, with different

small-angle neutron scattering results depending on if liquid was heated or

cooled to 950 °C.63 Al-Si at eutectic composition also forms different liquid

structure depending on the thermal treatment.79–81

Researchers simulated liquid Al-Si to examine its behavior and possible

origins of the hysteresis and microstructures. There have been some ab initio

MD (AIMD)79–84 and modified embedded atom method (MEAM)85 studies

calculating coordination numbers, partial correlation functions, diffusion,

bond angle distributions, and other properties. The simulations covered

mostly eutectic composition (12 at.% Si) and also the entire range of

compositions and temperatures from 900-2000 K. Some studies found

evidence of chemical short-range order,79,81,82,84 while others found the liquid

was well mixed.80,85 One study found tetrahedral short-range order79 while

another found negligible tetrahedral structures.81 There were other

interesting findings. For instance, Qin et al. found self-diffusion decoupling

of Al and Si in low concentration Si alloys,82 and Ji et al. found that

46

coordination numbers and structure factor peak height change faster in

900-1200 K temperature range, possibly suggesting a structural change in the

liquid around that temperature.84 Saidi et al. calculated step mobilities at

an Al-Si crystal-liquid interface using MEAM and around 10,000 atoms

simulation, but the calculated properties were not all available for

comparison.86 The studies seem to indicate some complex behavior of liquid

Al-Si that requires further investigation, and some studies have contradictory

results which we would like to resolve. Additionally, previous studies did not

examine SER in liquid Al-Si.

Our objective in this work is to investigate the SER and local order in

liquid Al-Si using molecular dynamics. Investigating SER requires

calculating diffusion and viscosity using data from MD simulations at

multiple temperatures including the supercooled liquid range. For the

simulations, we use an angular-dependent potential developed by Starikov et

al.14 because it is fast and showed good agreement with Al and Si liquid

properties, including diffusion and radial distribution functions. We also test

two high Al alloy compositions that are close to the eutectic composition.

We focus on local order and icosahedron clusters because previous studies

found icosahedron clusters’ correlation with SER breakdown71 and their

importance in liquid structure.77,78,87,88 We analyze the local order using

coordination numbers, radial distribution functions (RDFs), Voronoi

polyhedrons (VPs), and agglomerative clustering. Finally, we approximate

the clusters’ effect on viscosity and diffusion using per-atom viscosity and

diffusion calculations. The novel contributions of this work are:

1. evidence of Stokes-Einstein deviation in liquid Al-Si near the eutectic

composition,

47

2. the use of agglomerative clustering method applied to analyze atomic

clusters,

3. quantifying clusters’ effect on viscosity and diffusion using per-atom

methods.

Using the novel methods, we show that viscosity increases when icosahedral

clusters are present, while diffusion remains the same, which could be the

origin of the SER deviation in this system.

3.2 Methods

The MD simulations were done in LAMMPS

(http://lammps.sandia.gov)89 with periodic boundary conditions, and 1 fs

timestep. We ran simulations in the isothermal-isobaric (NPT) and canonical

(NVT) ensembles for two compositions Al90Si10 and Al95Si5, and we describe

their details in the following sections. The purpose of the NPT simulations

was to examine the possible phases that could form. We used the NVT

simulations to collect data for diffusion and viscosity calculations. We used

NPT solid-liquid interface simulations to determine the melting point for the

chosen compositions and potential. The calculations were run on Bridges90

within the XSEDE program.91 The data and code for this work are in the

repository.92

3.2.1 NPT cooling and NVT simulations

The simulations for Al90Si10 contained 988 Al and 111 Si atoms, and

simulations for Al95Si5 contained 1,037 Al and 62 Si atoms, which are 1,099

atoms total for each composition. We generated initial liquid configurations

by equilibrating at 1600 K and 0 bar pressure for 2 ns using NPT ensemble.

We ran cooling simulations at different cool rates. These simulations started

48

http://lammps.sandia.gov

at 1600 K and cooled to 900 K at three different rates: 1, 0.1, and 0.01 K/ps.

The purpose was to examine if differing cool rates result in different phases.

Another set of cooling simulations at the three cool rates started at 900 K

and cooled to 400 K. All cooling simulations were run in NPT ensemble with

0 bar pressure, temperature ramp, and Nose-Hoover barostat. We also ran

constant temperature NVT simulations with Nose-Hoover thermostat for

calculating diffusion and viscosity. The simulation box volume was chosen

from the cooling simulations to achieve near zero pressures. These

simulations were initialized from randomly placed atoms and equilibrating for

20 ps. The data collection simulation was then run for 10-20 ns to decrease

uncertainty in viscosity measurement. The simulations were repeated seven

times using different atom position and velocity initializations.

3.2.2 NPT melting point simulations

Solid-liquid interface simulations were used to determine melting point.

The simulations for Al90Si10 contained 1,901 Al and 204 Si atoms, and

simulations for Al95Si5 contained 2,020 Al and 121 Si atoms. The FCC-solid

and liquid configurations were placed into two equal volume halves of the

rectangular simulation box. There were 1,099 atoms placed in the solid

region and fewer atoms in the liquid region, corresponding with the liquid

density. We used LAMMPS minimize to smooth contact at the interface. NPT

simulations were run at multiple temperatures with pressure set to 0 bar

using Nose-Hoover thermostat and barostat. Simulation length was 500 ps

for temperatures near the melting point and 200 ps for temperatures further

from the melting point. We plot volume vs. temperature, using the final

volumes near the end of the simulations, and take the temperature at which

a sudden volume change occurs to be the melting point.

49

3.2.3 Diffusion

Diffusion was calculated using slope of mean squared displacement,

shown in Eq. 3.3,79 where α represents species and 〈.〉 represents ensemble

average. We used the Einstein method to calculate diffusion because it is

robust and less data intensive than the Green-Kubo method.93 Diffusion

follows a finite size effect with diffusion increasing with cell size, therefore we

applied the Yeh-Hummer correction shown in Eq. 3.4, where D∞ is the

infinite-cell diffusivity, D(L) is the diffusivity for box length L, kB is

Boltzmann constant, T is absolute temperature, η is viscosity, and ξ = 2.837

is a dimensionless constant determined from Ewald-like summation of a

periodic lattice.94 The diffusion coefficients were calculated by averaging the

mean squared displacement data from the last 200 ps of the simulation. This

ensures the diffusion is in the linear region and stabilized as long-time

diffusion.

Dα = lim
t→∞

〈
|Rα(t)−Rα(0)|2

〉
6t

(3.3)

D∞ = D(L) +
kBTξ

6πηL
(3.4)

3.2.4 Viscosity

Viscosity was calculated using Green-Kubo integration of stress

autocorrelation function (SACF), shown in Eq. 3.5.95 In our case, any

off-diagonal element of stress tensor can be used, and we averaged the three

off-diagonal combinations for the final viscosity. The SACF data is collected

during the simulation. We collected SACF data for 1-2 ps depending on the

temperature and used 10,000 ensemble averages to smooth the SACF. At

50

some low temperatures, the SACF requires longer than 2 ps to decay to zero

but follows a smooth decay path. Therefore, we fit the SACF data using Eq.

3.6 as used by Guo et al.,96 and C, ω, τf , τs, βf , and βs are fitting parameters.

The parameters were fit using scipy.optimize.curve fit,97 and Fig. 3.2

shows an example of the SACF data in blue and fit in orange. The SACF is

quite smooth but did not reach zero by 2 ps. The fit has some errors,

therefore we fit the errors between the SACF function and data using a

neural network with one hidden layer, four hidden units, and hyperbolic

tangent activation. A larger neural network could be used, but we found that

this architecture offered good accuracy and fast optimization. The neural

network weights were optimized using scipy.optimize.minimize and

minimizing the least squared loss. Fig. 3.3 shows an example neural network

fit. We expect the residual errors to be near zero as time increases, so it is

clear that we should only integrate the neural network residual in the time

range where SACF data is available. We integrate using trapezoidal rule: the

SACF function from 0-6 ps, and neural network delta in time range where

SACF data is available (0-1 or 0-2 ps), and sum the two integrations. Using

this two-stage fit method allows us to save computational time by collecting

SACF data up to 2 ps and still maintaining accuracy with the SACF

function. The neural network fit improves the accuracy while preventing

extrapolation. A low variance of the viscosity proves to be essential in the

effective diameter calculation.

η =
V

kBT

∫ ∞
0

〈Pxy(0)Pxy(t)〉dt (3.5)

SACF(t)

SACF(0)
= (1− C) cos(ωt) exp(−t/τf)βf + C exp(−t/τs)βs (3.6)

51

Figure 3.2: Example of stress autocorrelation data and fit.

Figure 3.3: Residual fitting error of SACF function minus SACF data using
neural network.

3.2.5 Effective diameter

We used propagation of error to find the standard error of effective

diameter, which is
√

(∂g
∂T

)2se(T)2 + (∂g
∂D

)2se(D)2 + (∂g
∂η

)2se(η)2, where

g = kBT
2πηD

. We found that the term with se(η)2 contributes the most to the

uncertainty, which is why a low variance in the viscosity is required.

We also fitted the FSE relation, and found the exponent κ from the negative

slope of the line regressing log(D/T) vs. log η. We report ±2 ·s.e. where s.e. is

standard error of the slope, determined from the parameter covariance matrix

using numpy polyfit.98 Fitting the FSE exponent allowed us to quantitatively

assess if SER deviation occurred.

52

3.2.6 Radial distribution function

We created radial distribution functions (RDF) using atom position

information (LAMMPS dump files) of the NVT simulations. We used atom

position information every 10 ps, and averaged over 350 snapshots to

generate the RDFs. The partial coordination histogram data up to 10 Å

cutoff was obtained using Ovito,24 and partial and total RDF are related by

Eq. 3.7, where g(r) is total RDF, cα and cβ are concentrations of the two

species α and β, and gij are the partial RDFs with i being the center atom.

g(r) = c2
αgαα(r) + 2cαcβgαβ(r) + c2

βgββ(r) (3.7)

3.2.7 Coordination numbers

Coordination numbers were obtained by integrating the partial RDFs as

in Eq. 3.8. Here, Nij represents j atoms surrounding an i center atom, Rmin

is first minimum in the total RDF, and ρj is number density of j species.

Nij =

∫ Rmin

0

4πr2ρjgij(r)dr (3.8)

3.2.8 Voronoi tessellation

Voronoi tessellation is a method that decomposes spatial volume to each

atom center and is commonly used to analyze the structure of liquids. The

points closest to the center are part of the VP.99 The Voronoi index

〈n3, n4, n5, n6〉 describes the VP, and each ni is the number of faces with i

edges. We used the Voronoi tessellation calculation from Ovito.

53

3.2.9 Clusters

Icosahedron VP were found to be important in liquids,71,77,78,87,88

therefore we especially consider icosahedron VPs and their clusters. An atom

with 〈0, 0, 12, 0〉 VP index is at the center of an icosahedron VP, which is

defined as the center atom and its 12 nearest neighbors. This is the smallest

icosahedron cluster with 13 atoms. If any of these 13 atoms are shared with

another icosahedron cluster, they are considered one cluster, and the linkage

continues transiently. Common numbers of atoms shared between

icosahedron VPs are one atom (vertex-sharing), two atoms (edge-sharing),

three atoms (face-sharing), and seven atoms (intercross-sharing),100,101 and

example clusters are shown in Fig. 3.4. To identify and assign atoms to these

clusters, we first calculate the VP index of each atom, then select the

〈0, 0, 12, 0〉 atoms and their nearest neighbors. For n selected atoms, we

create an n × n distance matrix with zeros on i, j entries if atoms i, j are

nearest neighbors and ones everywhere else. We then use agglomerative

clustering from scikit-learn with precomputed affinity, single linkage, and

0.1 distance threshold to fit our distance matrix.102 In our case, the distance

threshold could be any number strictly greater than zero and less than one,

so 0.1 was an arbitrary choice. The agglomerative clustering with these

parameters links clusters transiently if they have shared atoms. We used this

method because the clustering method in Ovito links atoms into clusters if

they have shared bonds; Fig. 3.5 shows an example of the distinction. The

agglomerative clustering assigns atoms to cluster-id at each trajectory

timestep.

We also found the clusters which lasted along consecutive timesteps in the

simulation. For the clusters at each timestep, we found the atom-ids of cluster

atoms at the current and previous timestep. If at least 13 atoms in a cluster

54

were the same across the two timesteps, we updated the current cluster-id to

match the corresponding cluster-id from the previous timestep. This algorithm

was repeated for all clusters and timesteps in the simulation. We chose a

minimum of 13 atoms because 13 is the smallest icosahedron cluster.

(a) (b) (c) (d)

Figure 3.4: Common icosahedral clusters that contain shared atoms (light
cyan). a): One atom shared (vertex-sharing), 25 total atoms. b): Two atoms
shared (edge-sharing), 24 total atoms. c): Three atoms shared (face-sharing),
23 total atoms. d): Seven atoms shared (intercross-sharing), 19 total atoms.

Figure 3.5: Left: Existing clustering method links by nearest neighbor bonds,
resulting in one cluster. Right: Agglomerative clustering of this work clusters
by shared atoms, two separate clusters.

3.2.10 Per-atom viscosity and diffusion

We developed per-atom calculation methods to approximate the clusters’

effect on viscosity and diffusion. The per-atom methods decompose viscosity

and diffusion contributions from each atom. Per-atom diffusion is a natural

concept because diffusion coefficient is an average over atoms. We frequently

calculate diffusion coefficients of different chemical elements, and researchers

have taken an interest to individual particle diffusions in relation to the SER,

both experimentally103 and in simulation.104 The per-atom viscosity here is a

55

practical method to approximate the effect of clusters on viscosity. We show

our formulation in the remaining part of this section. Our results (Section

3.3.9) show that viscosity from normal Green-Kubo or Einstein method is the

same as viscosity from the per-atom method when all atoms are included, and

nearly the same when some atoms are excluded in the per-atom calculation.

Therefore, the per-atom calculation is a reasonable approximation for the effect

of clusters on viscosity. The per-atom viscosity calculation could also be used

to determine viscosity of a liquid in contact with a solid during a simulation.

To calculate per-atom diffusion, we use displace/atom and com (center

of mass) commands in LAMMPS. Displace/atom gives the x, y, and z

displacements per atom from the initial configuration. We subtract the

center of mass drift from the displacement at each timestep (using pandas in

python). We then use the desired subset of displacements for calculating

mean squared displacement and diffusion as described in Section 3.2.3.

For per-atom viscosity, we use the Einstein method as shown in Eq.

3.9.93 Here ταβ are the off diagonal elements of the stress tensor, or

1
V

∑N
i=1(mvα,i(t)vβ,i(t) + rα,i(t)fβ,i(t)), α 6= β with fβ,i being the force acting

on particle i in direction β. Note it is possible to decompose the pressure

tensor elements by atom because it is a sum over all atoms, and we use

stress/atom compute in LAMMPS.105 The per-atom stress gives the negative

of the per-atom pressure tensor. For the volume, we approximate the volume

per atom using the Voronoi volume and sum the per-atom volumes of the

desired subset of atoms. We ran NVT simulations to collect per-atom data

for diffusion and viscosity, with seven independent trials at each temperature

tested. We saved snapshots of displacements and stresses per atom every

ts ∈ [0.04, 0.1] ps apart, depending on the temperature with shorter ts for

higher temperatures. Each simulation was run for 350-1000 ps, depending on

56

temperature with shorter simulations for higher temperatures. Following Eq.

3.9, there were 175 or 200 ensemble averages of the derivative, and the upper

limit t of the integral was 2-5 ps depending on the temperature, with smaller

t for higher temperatures. This is to ensure ensemble averages are

statistically independent, and stress autocorrelation decays to zero within 2-5

ps, with faster decay for higher temperatures. In addition, the Einstein

integral becomes nearly linear after a few picoseconds.93 The exact value of t

requires tuning and is more easily found by the Green-Kubo method for

viscosity.

η =
V

2kBT
lim
t→∞

d

dt

〈(∫ t

0

dt′ταβ(t′)

)2
〉

(3.9)

3.3 Results

3.3.1 Cooling simulation

We conduct cooling simulations to observe occurrence of distinct phases

at different temperatures. In direct cooling simulations, the liquid becomes

supercooled liquid below the melting temperature. It is unlikely that the

liquid spontaneously crystallizes at the melting point, but it may crystallize at

a much lower temperature if the cooling rate is slow enough. Fig. 3.6 shows

the potential energy changes with temperature for three different cooling rates.

57

(a) Al90Si10 (b) Al95Si5

Figure 3.6: Potential energy vs. Temperature shows presence of different
phases.

At 900 K and above, the potential energies are overlapping for the different

cool rates, so we did not include those temperatures in Fig. 3.6. The sudden

drop in potential energy indicates the crystallization phase change. For the

slowest cool rate, the crystallization occurred at 435 K for Al90Si10 and at 504

K for Al95Si5. For faster cool rates, the crystallization occurred at even lower

temperatures or not at all. At temperatures lower than around 430 K, the

atoms’ mean squared displacement became near zero. If the system did not

crystallize, it became an amorphous solid.

3.3.2 Melting point

We performed solid-liquid interface melting point simulations and observed

the volume vs. temperature to determine approximate melting point. Figs.

3.7 and 3.8 show the volume vs. temperature for the melting simulations.

Each point represents a simulation with independent initial configuration and

atom velocities. In Fig. 3.7, the Al90Si10 has simulations between 612 K and

645 K with solid or liquid phases depending on initialization. Therefore we

take the melting point to be at the center or 630 K. Similarly, we observe 685

K to 714 K temperatures partially melting for Al95Si5, and we take its melting

58

point to be 700 K. The melting points found by Starikov et al.,14 using the

same potential, were 740 K and 700 K for Al95Si5 and Al90Si10, which are close

but not the same as melting points found in this work. Starikov et al. did

not provide uncertainty estimates for their melting points, nor state the exact

compositions used to generate the phase diagram; these factors could explain

the differences in melting points. To decrease uncertainty on our calculated

melting points, larger simulations with longer time and several repeated runs

are required. These melting points indicate that configurations for Al90Si10

between 435 K and 630 K, and for Al95Si5 between 504 K and 700 K are

supercooled liquids.

Figure 3.7: Volume vs. Temperature in NPT solid-liquid interface simulations
for Al90Si10.

Figure 3.8: Volume vs. Temperature in NPT solid-liquid interface simulations
for Al95Si5.

59

3.3.3 Diffusion

We calculated self-diffusion coefficients for the Al-Si alloy in liquid and

supercooled liquid regions. Fig. 3.9 shows the diffusion coefficients. For solid

and amorphous phases, the diffusion was negligible, and these lower

temperatures were excluded from the plots. For both compositions, the Si

diffusion was higher than Al. Eq. 3.10 shows the Arrhenius equation for

diffusion, where D0 is the diffusion coefficient at infinite temperature

(pre-exponential factor), ED is the activation energy, and T is the

temperature in K.

D(T) = D0 exp

(
−ED
kBT

)
(3.10)

The diffusion coefficients follow the Arrhenius equation for the temperature

range, as shown in Fig. 3.10 along with the energy activations. In Table 3.1, we

compare the diffusions of this work with an ab initio study.82 The comparable

diffusions are quite close except DSi for Al90Si10, which may be caused by

be the difference between the physical potential and ab initio calculation.

Fig. 3.11 shows the ratio of Al to Si diffusion coefficients. The difference in

diffusion between Al and Si, as measured by this ratio, increases as temperature

decreases. This difference is likely caused by chemical interactions.82 In our

case, Si-Si repulsion becomes stronger as temperature decreases (Section 3.3.7),

therefore Si-Si repulsion could be why DAl /DSi decreases further from one as

temperature decreases.

60

Figure 3.9: Diffusion vs. Temperature for a): Al90Si10 and b): Al95Si5.

(a) Al90Si10 (b) Al95Si5

Figure 3.10: Diffusion follows Arrhenius equation.

Table 3.1: Diffusion coefficients comparison with literature values82

T (K) DAl (Å2/ps) DSi (Å2/ps) DAl/DSi

Al95Si5 1000 0.83 0.92 0.9
Al95Si5

82 1003 0.72 0.58 1.2

Al90Si10 950 0.74 0.79 0.94
Al92Si8

82 960 0.65 1.0 0.65
Al88Si12

82 960 0.77 0.87 0.89

61

Figure 3.11: DAl /DSi vs. Temperature for a): Al90Si10 and b): Al95Si5.

3.3.4 Viscosity

Viscosity is an important property that characterizes liquids. Fig. 3.12

shows the viscosities at various temperatures for Al90Si10, Al95Si5, and

experimental viscosity for Al88Si12.106 Viscosity increases as temperature

decreases, which is expected. The MD viscosities are close to the

experimental viscosities, and part of the difference is because they are

different compositions. Additionally, the trend in viscosity with temperature

matches well with experiment. Eq. 3.11 shows the Arrhenius equation for

viscosity, where η0 is the viscosity at infinite temperature, and Eη is the

activation energy.

η(T) = η0 exp

(
Eη
kBT

)
(3.11)

We show the Arrhenius fit of viscosities in Fig. 3.13. For both compositions,

there are two Arrhenius regions. The break between two regions occurs at 645

K for Al90Si10 and 700 K for Al95Si5, which are near their respective melting

points, 630 K and 700 K. The two Arrhenius regions indicate that viscosity

increases at a faster rate when temperature decreases.

62

Figure 3.12: Viscosity vs. Temperature for Al90Si10 and Al95Si5 compared
with experimental values.106

Figure 3.13: Two Arrhenius regions for Viscosity for a): Al90Si10 and b):
Al95Si5. Top row plots are residuals of ln viscosity minus Arrhenius fit.

3.3.5 Stokes-Einstein relation

We calculate the effective diameter of the SER using viscosity and

diffusion to investigate validity of the SER for the system. Fig. 3.14 shows

the effective diameters for Al90Si10 and Al95Si5. In Fig. 3.14a, the effective

diameter appears constant above 630 K, and decreases with temperature

below 630 K; therefore the SER breaks down at temperatures below 630 K.

In Fig. 3.14b, there are two regions with different effective diameters above

and below 690 K. The results show that the SER breaks down for these Al-Si

compositions near their melting points. Mathematically, the viscosity

63

increases too fast for SER to hold at the low temperature. In an alternative

view, if diffusion was slower at low temperatures, then the SER would hold.

Table 3.2 shows the pre-exponential factors and activation energies for

diffusion and viscosity, and the Arrhenius fits were shown in Figs. 3.10 and

3.13. The activation energies for viscosity and diffusion (Eη and ED) are

different, η0 appears to be dependent on temperature, while D0 is

independent of temperature in the temperature range. This indicates that

T
η0 exp((Eη−ED)/kBT)

must be constant for the SER to hold. Alternatively,

exp((ED−Eη)/kBT)

η0
∝ 1

T
for SER to hold. This is true in our case for Al90Si10

from 630-1400 K and Al95Si5 from 690-1400 K, and the respective values of

ED − Eη are 0.079 and 0.081 eV. Fitting the FSE, the κ values are 0.97 ±

0.01 and 0.97 ± 0.01 for Al90Si10 and Al95Si5, respectively. This indicates an

SER deviation occurred because κ 6= 1.

(a) Al90Si10 (b) Al95Si5

Figure 3.14: Deviations in Stokes-Einstein relation for a): at 630 K and b): at
690 K.

64

Table 3.2: Arrhenius fit parameters for diffusion and viscosity

T(K) range D0 (Å2/ps) ED (eV) η0 (mPa.s) Eη (eV)

Al90Si10 500 - 1430 8.5 0.197
500 - 645 0.099 0.168
645 - 1430 0.24 0.118

Al95Si5 550 - 1430 9.0 0.203
550 - 700 0.13 0.158
700 - 1430 0.23 0.122

3.3.6 Radial distribution functions

RDFs are used to examine the structure of liquids. Figs. 3.15 and 3.16

show the total and partial RDFs for Al90Si10 and Al95Si5, respectively. The

total RDFs at 700 and 1000 K have characteristic shape for a liquid, which

verifies validity of our potential and simulations. As temperature decreases the

total RDF begins to have sharper peaks, which is also expected. There is also

a slight double bump in the second peak of some RDFs at the low temperature,

which is sometimes observed for low temperature liquids. Origin of splitting

of the second peak is an active area of research and some hypotheses are

intensified icosahedral order, local translational symmetry,107 and connections

of polyhedrons of atoms.108,109 The double bump does indicate the supercooled

liquid structure begins to more closely resemble an amorphous structure as

temperature decreases.109 We also observe that first neighbor Si-Si atoms are

further apart as temperature decreases, and further apart than Al-Si or Al-Al

pairs.

65

Figure 3.15: RDFs at different temperatures for Al90Si10. a): Total. b): Al-Al.
c): Si-Si. d): Al-Si.

Figure 3.16: RDFs at different temperatures for Al95Si5. a): Total. b): Al-Al.
c): Si-Si. d): Al-Si.

66

3.3.7 Coordination number and chemical short-range order

Coordination number is the number of nearest neighbors for a center

atom. We examine coordination numbers and partial coordination numbers

to characterize the liquid and possible chemical short-range order (CSRO).

Figs. 3.17 and 3.18 show the coordination numbers vs. temperature for

Al90Si10 and Al95Si5, respectively. Al-Si coordination number indicates Al as

the center atom. The coordination numbers for Al90Si10 were close to

coordination numbers found for Al88Si12 in an ab initio study by Wang et

al.79 They found the Al-Si coordination number around 3.0 for the same

temperature ranges, which is higher than our Al-Si coordination number

around 1.0. This difference is likely due to the physical potential used vs.

their ab initio simulation. For total, Al-Al, and Si-Al coordination numbers,

the coordination numbers do not show a clear trend as the temperature

changes. The Si-Si coordination number decreases as temperature decreases

for both compositions, which is a change in CSRO.

Figure 3.17: Total and partial Coordination Numbers for Al90Si10.

67

Figure 3.18: Total and partial Coordination Numbers for Al95Si5.

The Warren-Cowley parameter measures CSRO, and is defined in Eq.

3.12.110,111

αlij = 1− Nij

cjNi

(3.12)

where i is center atom species, j is surrounding atom species, l is shell, Nij is

i-j coordination number, cj is concentration of j, and Ni is total coordination

number around i center atoms. The value
Nij
Ni

is the conditional probability

of j surrounding atom given i center atom,

P (j neighbor atom|i = center atom). If the chemical species were distributed

randomly, this probability would equal the concentration of j atoms, cj.

Therefore Warren-Cowley α = 0 represents random distribution, α < 0

represents attractive interaction, and α > 0 represents repulsive interaction of

j surrounding i atoms. Tables 3.3 and 3.4 show the first-shell Warren-Cowley

parameters at different temperatures for Al90Si10 and Al95Si5, respectively.

The Al-Al, Al-Si, and Si-Al parameters are near zero, meaning they are

mostly random. The Si-Si parameters are largely positive, indicating that

Si-Si has repulsive interaction in these compositions. In addition, the Si-Si

becomes more repulsive as temperature decreases, since the magnitude of

Warren-Cowley parameter increases as temperature decreases.

68

Table 3.3: Warren-Cowley CSRO parameter α1
ij for Al90Si10

Temp (K) Al-Al Si-Si Al-Si Si-Al

481 -0.001 0.762 0.067 -0.086
600 -0.003 0.651 0.042 -0.073
800 -0.005 0.651 0.024 -0.073
1000 -0.007 0.554 0.008 -0.062

Table 3.4: Warren-Cowley CSRO parameter α1
ij for Al95Si5

Temp (K) Al-Al Si-Si Al-Si Si-Al

571 -0.004 0.662 0.070 -0.040
700 -0.003 0.671 0.058 -0.040
800 -0.003 0.637 0.045 -0.038
1000 -0.002 0.582 0.030 -0.035

3.3.8 Voronoi polyhedrons

We obtained the Voronoi indices of each atom in the frames of the

simulations. The most common indices are shown in Figs. 3.19 and 3.20 for

Al90Si10 and Al95Si5, respectively. The perfect icosahedron is 〈0, 0, 12, 0〉,

distorted icosahedrons are 〈0, 1, 10, 2〉 and 〈0, 2, 8, 2〉.112 Our data also had

〈0, 1, 10, 3〉 and 〈0, 2, 8, 4〉 indices which appear to be distorted icosahedrons.

Distorted FCC polyhedrons are 〈0, 3, 6, 4〉, 〈0, 3, 6, 5〉, 〈0, 4, 4, 6〉,112 and our

data also had 〈0, 4, 6, 3〉 and 〈0, 4, 6, 4〉 indices which are similar to distorted

FCC polyhedrons. In Figs. 3.19 and 3.20, the Al atoms for all indices except

〈0, 4, 6, 3〉 and 〈0, 4, 6, 4〉 increased as temperature decreased. The change in

Si fraction is not as dramatic, but there is a slight increase in fraction of Si

atoms with 〈0, 2, 8, 2〉 and 〈0, 3, 6, 4〉 indices as temperature decreases. A

larger fraction of Al than Si atoms have 〈0, 1, 10, 2〉, 〈0, 2, 8, 4〉, 〈0, 3, 6, 4〉,

〈0, 3, 6, 5〉, and 〈0, 4, 4, 6〉 indices.

69

Figure 3.19: Common Icosahedron (ICOS) and FCC-like Voronoi polyhedrons
for Al90Si10.

Figure 3.20: Common ICOS and FCC-like Voronoi polyhedrons for Al95Si5.

We observe how the fraction of icosahedron (ICOS) and FCC-like VP

change as temperature decrease. In Fig. 3.21, we show the sum of all ICOS

indices from Fig. 3.19 vs. temperature. Fig. 3.21 includes data from the

NPT cooling simulation with 0.01 K/ps cooling from 1400 to 400 K. This

data was smoothed using Savitzky-Golay filter.113 The three lines indicate

different sets of hyperparameter settings for Voronoi tessellation: minimum

70

edge threshold 0.1 Å, minimum face threshold 1%, and no thresholds. There

are differences between Voronoi index classification depending on the

hyperparameter settings, but the trends are the same in Fig. 3.21. In all

other results, ”no thresholds” were used unless specified. Fig. 3.21 also

includes the data from the NVT simulations which match the smoothed NPT

cooling simulation data. Fig. 3.21 shows a smooth increase fraction of ICOS

VPs as temperature decreases, with a sudden decrease at the crystallization

phase change. Fig. 3.22 shows the sum of all FCC indices from Fig. 3.19 vs.

temperature. The NPT signal-filtered data matches with the NVT data. The

three hyperparameter settings show the same trend in the liquid and

supercooled liquid regions, but differ at the crystallization. This indicates

Voronoi tessellation is sensitive to FCC characterization if the FCC lattice is

not perfect. Fig. 3.22 shows the fraction of FCC VPs increases as

temperature decreases in the liquid and supercooled liquid region.

(a) Al90Si10 (b) Al95Si5

Figure 3.21: Fraction of ICOS Voronoi polyhedron atoms vs. Temperature.

71

(a) Al90Si10 (b) Al95Si5

Figure 3.22: Fraction of FCC Voronoi polyhedron atoms vs. Temperature.

Five-fold symmetry in liquids has been found to be important for dynamic

slowdown.78 We calculate the average local five-fold symmetry (LFFS), shown

in Eq. 3.13, where ni are number of i faced edges of the Voronoi polyhedron.71

d5 = n5/
∑
i

ni (3.13)

Fig. 3.23 shows the LFFS change with temperature. The same trend occurs for

the three hyperparameter settings of Voronoi tessellation. The LFFS increases

as temperature decreases until a steep drop at the crystallization. However the

LFFS increases steadily without a sudden acceleration at any temperature in

Al-Si, while a sudden acceleration was observed in Al-Fe liquid alloys.71 This

indicates that LFFS is not a universal indicator of Stokes-Einstein deviation.

72

(a) Al90Si10 (b) Al95Si5

Figure 3.23: Local five-fold symmetry vs. Temperature.

We assigned atoms to clusters surrounding center atoms with the

〈0, 0, 12, 0〉 icosahedron index, as described in Section 3.2.9. Fig. 3.24 shows

number of atoms belonging to clusters and number of atoms in the largest

cluster vs. temperature. The lines are signal-filtered data from NPT cooling

simulation, and points are data from NVT simulation. The results from the

two types of simulations are consistent. Fig. 3.24 shows an increase in the

atoms in clusters and the size of the largest cluster as temperature decreases

until the crystallization phase change. The expectation of the size of the

largest cluster is around 40 atoms, just before the crystallization. Also the

maximum expectation of total atoms in clusters occurs just before

crystallization and is 140 atoms, which is 12.7% of atoms.

We also analyze the life of the clusters, or time duration that a cluster

lasts in the simulation. Cluster assignment over time is described in Section

3.2.9. Fig. 3.25 shows the percent of clusters lasting longer than 1 ps vs.

temperature. At 800 K, almost no clusters last longer than 1 ps. As

temperature decreases, more clusters form, and more of the clusters last

longer than 1 ps. One picosecond is significant because it is 1,000 simulation

steps and shows the clusters are real. At the same temperature, Al95Si5 has a

slightly larger fraction of long lasting clusters than Al90Si10. For Al90Si10,

73

7.5% of clusters at 510 K last at least 1 ps, and for Al95Si5, 4.3% of the

clusters at 570 K last at least 1 ps. At these supercooled temperatures before

crystallization, the vast majority of clusters still last shorter than 1 ps. (The

cutoff time was 1 ps because the analysis is memory intensive.)

(a) Al90Si10 (b) Al95Si5

Figure 3.24: Total atoms in clusters and largest clusters vs. Temperature.

Figure 3.25: Percent of clusters that last longer than 1 ps vs. Temperature.

We examine the chemical composition of the clusters. Fig. 3.26 shows the

fraction of Al atoms in clusters vs. temperature. The NPT cooling simulation

data is signal-filtered but still quite noisy, and NVT data matches the NPT

data. The black dashed lines are the overall concentration of Al. In Fig. 3.26,

the fraction of Al in clusters is higher than overall Al concentration, which

indicates Al atoms are more likely to be in a cluster than Si atoms. The fraction

of Al in clusters increases as temperature decreases, showing segregation of Al

74

into clusters becomes stronger as temperature decreases. The weak repulsion

of Si-Si could explain why Si atoms are less likely to be in the icosahedral

clusters.

(a) Al90Si10 (b) Al95Si5

Figure 3.26: Fraction of Al atoms in clusters is higher than Al concentration.

3.3.9 Cluster effects on viscosity and diffusion

We use the per-atom methods described in Section 3.2.10 to isolate the

effect of clusters on diffusion and viscosity. If an atom was in an icosahedral

cluster in two adjacent timesteps, we separate its contribution from the

remaining atoms’ data at that timestep. Fig. 3.27 shows the per-atom

diffusions, and they are the same as diffusions in Fig. 3.9, which were

calculated from LAMMPS msd command. The per-atom diffusions with and

without atoms in clusters are the same. This indicates that icosahedral

clusters do not significantly alter the diffusivity. It is possible that a cluster

diffuses as one entity, or each atom goes in and out of clusters over time,

therefore the long-time diffusivity is the same for atoms within and outside of

clusters.

75

Figure 3.27: Per-atom diffusion vs. Temperature for a): Al90Si10 and b):
Al95Si5. Diffusions for atoms inside and outside clusters are the same.

We examine how clusters affect the viscosity. Fig. 3.28 shows the

per-atom and Green-Kubo viscosities. The per-atom viscosities including all

atoms align with the Green-Kubo viscosities from Fig. 3.12. The uncertainty

using Einstein method is higher than Green-Kubo for viscosity, which is an

expected difference between the two methods.93 The viscosities excluding

cluster atoms are always lower than the viscosities with all atoms. This

indicates that clusters increase the viscosity, which is reasonable because we

expect clusters to increase a fluid’s autocorrelation, and SACF decay time.

Intuitively, clusters should thicken a fluid. The differences in all-atom and

no-cluster viscosities increase as temperature decreases, because more atoms

are in clusters as temperature decreases. The per-atom method allows us to

isolate the effect of individual atoms and subgroups of atoms in the liquid

and shows the intuitive result that clusters increase viscosity in the liquid

alloy.

76

Figure 3.28: Per-atom viscosity vs. Temperature. Per-atom Einstein
viscosities match with Green-Kubo viscosities. Per-atom viscosity decreases
when atoms in clusters are excluded, indicating that clusters increase viscosity.

We want to determine if the difference in viscosities with and without

clusters can explain the SER deviation. Figs. 3.29 and 3.30 show the effective

diameter vs. temperature for Al90Si10 and Al95Si5, respectively. Figs. 3.29a

and 3.30a show the effective diameter calculation using per-atom viscosities

and diffusions with cluster atoms removed, while Figs. 3.29b and 3.30b show

the per-atom viscosities and diffusions with all atoms. In Figs. 3.29b and

3.30b, the SER deviations are expected for the entire system, and the same

deviations are observed in Fig. 3.14. However, in Figs. 3.29a and 3.30a,

there is no longer a clear SER deviation when the cluster atoms’ contributions

are removed. We also fit the FSE to the data. For data in Figs. 3.29a and

3.29b, κ = 1.00 ± 0.02, and κ = 0.96 ± 0.02, respectively. For Figs. 3.30a

and 3.30b, κ = 0.99 ± 0.02, and κ = 0.95 ± 0.02, respectively. The κ values

quantitatively show that SER breaks down when cluster atoms are included

but holds when cluster atoms are excluded. This indicates that the increase in

viscosity attributed to clusters can explain the SER deviation in liquid Al-Si.

77

Figure 3.29: Effective diameter vs. Temperature for Al90Si10 using per-atom
viscosities and diffusion coefficients. a): Atoms in clusters are removed. b):
Atoms in clusters are included.

78

Figure 3.30: Effective diameter vs. Temperature for Al95Si5 using per-atom
viscosities and diffusion coefficients. a): Atoms in clusters are removed. b):
Atoms in clusters are included.

3.4 Conclusions

We simulated liquid Al90Si10 and Al95Si5 at different temperatures to

investigate the Stokes-Einstein relation (SER) and local structure. Diffusion

follows the Arrhenius equation for 1400 K to the supercooled temperatures

just before spontaneous crystallization. Two distinct Arrhenius equations

can characterize the viscosities at different temperature ranges, with the

breaks near the melting points of the compositions. We found the SER holds

from 1400 K and below to the melting point and deviates in the supercooled

temperature region. The actual viscosity is higher than predicted by SER, or

alternatively, the actual diffusion is larger than predicted by SER. In

examining chemical short-range order, we found weak Si-Si repulsion at the

79

low Si compositions tested. The icosahedral and FCC-like Voronoi

polyhedrons atoms increase as temperature decreases, with a jump change at

crystallization. We assigned atoms into clusters surrounding icosahedral

Voronoi atoms using agglomerative clustering. We found real and significant

clusters with longest lasting clusters of 8 ps. The fraction of long lasting

clusters, size of clusters, and fraction of atoms in clusters all increase as

temperature decreases in the liquid and supercooled regions. We find more

Al atoms in clusters and slower diffusion for Al compared with Si. These two

trends become stronger and move in the same direction as temperature

decreases. We developed a method to calculate viscosity and diffusion

contribution per-atom, and showed that clusters increase viscosity but have a

minimal impact on diffusion. Furthermore, we showed that the viscosity

increase attributed to clusters leads to a SER deviation.

80

4 Uncertainty Quantification in Machine

Learning and Nonlinear Least Squares

Regression Models

4.1 Introduction

Machine learning (ML) models are used in many fields of science and

engineering. They can decrease computational time, make predictions and

forecasts, and improve insights of complex and high dimensional datasets.

Models are more useful when they provide a prediction with its uncertainty,

and in some applications it may be critical to provide a reliable uncertainty

estimate.114,115 The uncertainty estimate should also help identify input data

regions that lead to extrapolation. Overall, ML models can be used more

reliably when robust uncertainty quantification is available. In the simple

case of low dimensional linear regression, an analytical prediction interval is

available116 and can be used to calculate the uncertainty intervals in many

statistical software packages. The analytical prediction interval for linear

regression requires (XTX) to be invertible, where X ∈ Rn×d is the design

matrix with n data points and d feature dimensions. In general for more

complex (nonlinear) models and higher dimension datasets, analytical

prediction intervals do not exist and alternative methods are required.

Uncertainty quantification methods for ML models are an active area of

research.117–119 Some common methods are model ensembling, training

models with built in uncertainty such as Gaussian process (GP) regression,

and quantile regression.120,121 If we already have a model with trained

parameters, we may want to avoid training a different model type or

additional model ensemble. In these cases, this chapter presents a simple

81

uncertainty quantification method for parameterized models trained on

minimizing the summed squared error between a model and a dataset. The

method exploits automatic differentiation to calculate the Hessian of the loss

function based on summed squared errors, and provides an uncertainty

estimate which depends on the prediction point, model training data, and

model itself. We show how the uncertainty can identify if extrapolation is

occurring and aids in dataset selection for an example application of

molecular simulation. In the remaining sections, we review the background

on uncertainty quantification and an application of ML models for molecular

simulation, describe the aforementioned delta method, and show its use in an

example neural network that predicts energies from atomic structures.

4.1.1 Uncertainty quantification methods

Uncertainty quantification methods for models include bootstrap,

ensembling, using model-specific uncertainty, and the delta method.

Bootstrap, ensembling, and the delta method can be used for parametric

models and neural networks (NNs). Bootstrap uncertainty is based on

statistical theory, has some different variations, and requires training

multiple models on different bootstrap samples of the data or residuals.122–124

With the different models, the uncertainty on predictions can be estimated.

Ensemble methods require training multiple models on the entire dataset,

and the different models give the uncertainty.125–127 The uncertainty estimate

quantitatively improves as the ensemble size increases, so the optimal

number of ensemble models is unknown and must be user determined.128

Some studies used bootstrap uncertainty for NN models and showed that it

gave more reliable uncertainties than the delta method,129,130 but training

multiple models is computationally expensive and time consuming.

82

Model-specific uncertainty include Gaussian process regression,131

dropout for NNs,132 and Bayesian NNs.133–135 Obtaining uncertainties in this

way limits the possible mathematical forms of the model. Dropout and

Bayesian NNs are also more difficult to train than standard NNs. Section

4.1.2 describes specific instances in which ensembling, bootstrap, and

Gaussian process methods were used for molecular simulation. In another

method, the posterior of model parameters can be approximated by the

Laplace approximation, which is the second order Taylor series expansion

around the optimal model parameters.136,137 Hence the Hessian of the log

likelihood contains relevant information about uncertainty.

This chapter focuses on the delta method, which also uses the Hessian of

the log likelihood. The method is based on linearly approximating the model

and uses an estimate of the standard error of model parameters assuming

maximum likelihood estimation (MLE). Therefore, the method applies to

models with parameters trained by minimizing squared error, and the model

structure could be a simple linear regression to complex nonlinear regression

including NNs. Different variants of the method use approximations of the

Hessian, and experiments tested the delta method on NN models.129,138–142

We further describe the method in Section 4.2 with theoretical details in

Appendix D.

4.1.2 Addressing uncertainty in molecular simulation

We examine uncertainty quantification using the example application of

molecular simulation, an area which has benefited from ML. Here we

describe the background of ML for molecular simulation. Simulations allow

researchers to obtain materials’ physical properties and quickly screen

materials. Molecular dynamics (MD) and Monte Carlo simulations require a

83

model of the potential energy surface (PES) which predicts energies and

forces from atomic configurations. The options for the PES model include

first principles methods such as density functional theory (DFT), physical

potentials, and ML potentials. ML potentials aim to achieve the high

accuracy of DFT at a significantly faster computational time. ML potentials

are also more systematically improvable than physical potentials.17 Many

studies have successfully used ML potentials in simulations.35–38

Uncertainty quantification is useful for ML potentials. Commonly used

ML potentials such as NNs will usually unreliably extrapolate on inputs

much different from their training data. A likely consequence of

extrapolation during a molecular simulation is wrong or unphysical results.

The best ways to select enough of the relevant training space are nonobvious,

since the space of atomic structures is often large, not well understood, and

not possible to enumerate. Further, atomic structures are translated into

fingerprints which are high dimensional and less human-interpretable than

the original atomic configurations. Hence, we require a method to determine

the uncertainty of a prediction from an ML potential, and the quantitative

uncertainty helps us avoid extrapolation and identify sparse regions in the

training dataset.

Current methods developed to address uncertainty are ensemble of

potentials, on-the-fly methods, and using ML models with built-in

uncertainty. Ensemble methods independently train two or more ML

potentials, and check for agreement between them. In Behler’s approach,

they trained NNs with different architectures, and atomic structures whose

predictions’ differ significantly across NNs are added to the training

set.33,44,143 Peterson et al. trained an ensemble of 50 NN potentials and

found that ensemble spread was a good indicator for prediction error across

84

the space.144 Smith et al. also used ensemble disagreement to approximate

prediction error and select a small training set.49,145

In MD simulations, on-the-fly methods use an ML potential augmented

with quantum mechanical (QM) calculations.146 There is a query if the ML

prediction can be used. If it fails, a QM calculation is run and added to a

database, and the ML model can be retrained. A simple query is if the

fingerprint is out of the minimum and maximum bounds in the current

database.42 This is a minimum requirement that the ML model is not

extrapolating; however, guaranteeing that the fingerprint is within bounds of

training data does not guarantee a low error.147

Another approach is training Gaussian process regressions (GPRs)47,146

or other ML models with built-in uncertainty estimates. Vandermause and

Xie et al. used GP uncertainty to train potentials on-the-fly.148,149 Many ML

models, such as NNs, do not have theoretical guarantees for uncertainty of a

prediction. Perturbation of NN weights could provide some range of

uncertainty.150 Other work used dropout in NN training as a Bayesian

approximation and thereby calculating uncertainties for interatomic

potentials.151 Janet et al. used the distance in values of the last layer of NNs

(or latent space) as an uncertainty measure.152 Tran et al. compared GP,

Bayesian NN, dropout NN, and ensembles of different NN structures and

found more conservative uncertainties for GP and overconfident uncertainties

for Bayesian NN, dropout, and NN ensemble.153

Musil et al. compared GP, ensembling with random subsets of the data,

and bootstrap methods for obtaining uncertainties of predicting formation

energies on molecular datasets.154 They found that random sampling was

easier to implement than bootstrapping, computationally faster than GP for

uncertainty estimates, and matches the true error and uncertainty from GP.

85

Li et al. trained NN potentials with different NN structures (number of

nodes), weight initialization, and learning rates, and compared the resulting

prediction accuracies.155 Their work showed a quantitative uncertainty

arising from some NN hyperparameters, but it required training several NN

potentials for a new system, and does not provide confidence or prediction

intervals. In an alternative approach, Botu et al. fitted an empirical function

to an uncertainty estimate as a function of fingerprint distance between

input and reference training fingerprints.156 Their uncertainty estimation

approach requires a larger training set size.

Overall, there is not a clear consensus on the best uncertainty quantification

method, and its selection usually depends on the model form used, e.g. built-

in uncertainty from GPR or ensembles when using NNs. The delta method

provides a simple alternative for providing quantitative uncertainty when a

pretrained model exists, without the necessity of training additional models.

4.2 Methods

The delta method applies to regression problems of a model g with

parameters θ. The residuals of model prediction are assumed to be Gaussian

distributed and centered around zero. We assume the model parameters θ̂

were obtained by minimizing a function of the summed squared errors,

although the method can be extended to maximize a posteriori estimation

and cross-entropy loss for classification tasks.157 We obtain an approximate

standard error of a model prediction g(θ̂, x) by using a Taylor series

approximation and an approximate standard error of θ̂. Suppose that ∂g(θ̂,x)

∂θ̂

86

is nonzero, then the standard error of g(θ̂, x) for a point x is given in

Equation 4.1 using the delta method.

se(g(θ̂, x)) ≈

√
∂g(θ̂, x)

∂θ̂

T

I−1
n

∂g(θ̂, x)

∂θ̂
(4.1)

where ∂g(θ̂,x)

∂θ̂
is the gradient vector of the model with respect to parameters

at the point x for which we are calculating uncertainty, and In is the Fisher

information matrix, defined as the expectation of the Hessian of the negative

log likelihood. The Fisher information is related to the Hessian of the loss,

usually the sum of squared errors, by a scaling factor. Equation 4.1 shows that

the model prediction of the standard error is a function of the training data,

model, and point for which the uncertainty is calculated.

For small to medium models, the delta method is faster and easier to

implement compared to ensembling, and the Hessian and gradients of the

model are readily obtained with automatic differentiation that is included in

most machine learning packages. To demonstrate the ease of use, we show a

simple code example using the autograd158 package in Section 4.2.2. The

delta method is limited by model size since the Hessian will be m×m where

m is number of parameters, and the Hessian needs to be inverted. For very

large models and NNs, inverse Fisher information approximations have been

proposed. Ritter et al. implemented Kronecker-factored Hessian for a

network with around 2 million parameters,136 and Nilsen et al. proposed and

implemented eigenvalue spectrum Hessian approximation on networks with

around 100,000 parameters.157 For even larger networks, other uncertainty

quantification methods would likely need to be used.

The uncertainties are calculated after the model has finished training,

and the Fisher information inverse only needs to be calculated once per

87

model and training dataset. In previous tests, a model with 861 parameters

and 1,900 training data points required around five minutes to calculate the

inverse Fisher information with Intel Core i7-7820HQ CPU @ 2.9GHz using

autograd. Using more modern automatic differentiation frameworks is

expected to be faster. Calculating the uncertainties after obtaining the

inverse Fisher information requires much less time. Theoretically, calculation

of the Fisher information matrix scales quadratically with number of

parameters and linearly with number of training data points.

The quality of standard errors calculated using the delta method depends

on the fit of the model. We found that well fitted models have better

uncertainty measures, and our assumptions required residuals to be

independent, and identically distributed normal around zero. Poorly fitted

models have uncertainty measures that are less quantitatively accurate.

4.2.1 Practical modifications to the inverse Fisher matrix

There are a few steps or best practices to modify how the inverse Fisher

information matrix is computed.

1. We start with H, the Hessian of the sum squared errors loss function.

For some models, such as NNs, the Hessians of the loss functions with

respect to parameters are often nearly singular with some eigenvalues

much larger than the others,159,160 and the optimal parameters may be

at a saddle point.

2. Add a small number ε to Hessian diagonal. Adding ε to the diagonals

makes the matrix better conditioned for taking its inverse. ε should

be larger in magnitude than the most negative eigenvalue. We used ε =

max(1e−5, 1.05·abs(λmin(H))), where λmin(H) is the smallest eigenvalue

of H. Modifying the Hessian of objective function with respect to NN

88

parameters has been suggested in literature and is justified because the

top eigenvalues are a few orders of magnitude larger than the other

eigenvalues.136,160,161 Also note the Hessian conditioning suggests that

the number of parameters of the NN is much larger than the actual

degrees of freedom of the NN.

3. We take the Moore-Penrose pseudoinverse (H + εI)−1. If the inverse

exists, which is most cases following step 2, it is the same as the true

inverse.

4. Multiply (H + εI)−1 by a scaling factor α. This is done to calibrate the

uncertainties to be near the residuals. We set α to be mean squared error

(MSE) in most cases. To select α, we suggest trying nβ ·MSE where

n is number of training data points and β is any nonnegative number,

but usually in range [0, 1]. The α should be chosen so that uncertainties

are the same order of magnitude as the residual errors for the training

dataset.

5. Force the scaled inverse P := α(H + εI)−1 to be positive semi-definite.

For eigendecomposition P = QΛQ−1, the closest positive semi-definite

matrix in terms of Frobenius norm is Qmax(Λ, 0)Q−1, where max is

element-wise max.162

The final inverse Fisher information I−1
n used in Equation 4.1 is

Qmax(Λ, 0)Q−1.

4.2.2 Code example

We show a simple code implementation of the delta method in Listing 1

using the autograd package.158 Note that obtaining the required gradients is

a single line for the Hessian (line 23) and gradients (line 28), demonstrating

89

the ease of automatic differentiation. Similar codes would apply in

PyTorch163 or other machine learning packages. In this simple example we fit

a quadratic function to some slightly noisy data, and show the resulting

confidence intervals on the fit. The Hessian in this case was well-conditioned,

so the modifications described above were not necessary.

1 import autograd.numpy as np

2 from autograd import elementwise_grad, hessian

3 from scipy.optimize import minimize

4 import matplotlib.pyplot as plt

5 from scipy.stats.distributions import t

6

7 x = np.array([0.1, 0.3, 0.5, 0.7, 0.9]) # {x, y} data

8 y = np.array([0.0, 0.1, 0.3, 0.5, 0.8])

9

10 def g(theta, x): # suppose we want to fit function g

11 '''function with parameters theta'''

12 return theta[0] * x**2 + theta[1] * x + theta[2]

13

14 def sse(theta):

15 '''Summed squared error objective function'''

16 return np.sum((g(theta, x) - y)**2)

17

18 initial_guess = np.array([0.1, 0.5, 0.2])

19 sol = minimize(sse, initial_guess) # minimize sse

20 theta = sol.x

21 ypred = g(theta, x)

22

23 h = hessian(sse)(theta) # obtain Hessian of sse using autograd

24 p = sse(theta) / len(x) * np.linalg.pinv(h) # inverse and scale Hessian

25

26 uncerts = []

27 for xi in x:

28 gprime = elementwise_grad(g, 0)(theta, xi) # obtain gradient using autograd

29 uncerts += [np.sqrt(gprime @ p @ gprime)] # delta method

30 uncerts = np.array(uncerts)

31

32 tval = t.ppf(0.975, len(x)) # t-value

33

34 plt.plot(x, y, 'o') # plot the data, fit, confidence intervals

35 plt.plot(x, ypred)

36 plt.plot(x, ypred + tval * uncerts, '--r')

37 plt.plot(x, ypred - tval * uncerts, '--r')

38 plt.xlabel('x')

39 plt.ylabel('y')

40 plt.legend(['Data', 'Prediction', '95% confidence'])

41 plt.savefig('simple-code-ex.png')

Listing 1: Autograd example of the delta method.

90

Figure 4.1: Result from Listing 1.

This simple example shows all the pieces of the delta method. There is

data, and a function (line 10) with parameters that are fitted to the data.

The regression here is done by optimization (line 19); this problem is linear

and could be solved analytically, but we show the optimization approach for

generality. We used automatic differentiation to obtain the Hessian (line 23)

and gradient of the function (line 28) with respect to the parameters. The rest

is conventional linear algebra.

In calculating the t-value (line 32), technically the degrees of freedom

should be used instead of number of data points. However for large NNs, the

effective degrees of freedom is much smaller than the number of model

parameters, and determining NN degrees of freedom is an active area of

research.164–166 For simplicity, we used the number of data points to estimate

the t-value throughout our results.

4.3 Results

We show examples of using the delta method on different models to

demonstrate how the uncertainty behaves. We begin with a simple 1-D NN,

and build complexity in subsequent examples.

91

4.3.1 One dimension input NN

This example is a one dimension input NN. We start with one dimension

input for clearer intuition and visualization. We generated synthetic data

from the one dimensional Lennard-Jones (LJ) function and added some

Gaussian noise. We fitted this data to a neural network with structure [1, 4,

1] (one input, one hidden layer with four nodes, and one output) using

scipy.optimize.minimize. The NN had 13 total parameters.

We test how the standard error changes with different training datasets.

We generated two sets of training data to fit the NN, and Fig. 4.2 shows the

fits. These sets of training data were from the same LJ function and had the

same variance of Gaussian noise added. We expect the true function to be

within the confidence interval 95% of the time. In Fig. 4.2a, the uncertainty

increases for large and small x, which is desirable because we do not know how

the NN will behave in those regions outside the training data. In Fig. 4.2b,

there is a region of missing data in the middle, and the confidence interval

expands in the region of missing data. These cases demonstrate that the

uncertainty depends on the training data in a useful way. The uncertainty

generally increases in regions with less data, which makes sense because we

are less certain of our model in a space with less training data.

92

(a) (b)

Figure 4.2: One dimension input NN and confidence intervals. a): 23 training
data points, and confidence interval wider at the edges. b): Region of missing
data in middle, and confidence interval expands in region of missing data.

4.3.2 High dimensional NN potential

Trained NN potential

This example applies the delta uncertainty method to a high dimensional

NN potential. We use the SingleNN (implemented in PyTorch) and weighted

Behler-Parrinello style symmetry functions.167–169 The data are DFT energy

and force calculations based on atomic configurations, specifically the dataset

used in Boes 2017.170 The dataset contains 3,907 unique AuPd slabs, and

example configurations are shown in Fig. 4.3. The symmetry functions

transform the atomic configuration information into a vector of numbers, or

”fingerprint”, and we use four weighted G2 symmetry functions. For the NN,

we use two hidden layers with 11 nodes each; thus the NN architecture is [4,

11, 11, 2], which is 211 total parameters.

93

Figure 4.3: Three example atom configurations from dataset.

To demonstrate the usefulness of the uncertainty method, we start by

training on a subset of the data. This mimics the iterative approach often

used in training these models. We then check for extrapolation on the

remaining data using the delta method. For this first potential, 572

configurations with a 3.934 Å lattice constant were randomly split into 64%,

16%, 20% train, validation, test sets, respectively. The NN was trained on

energies and atomic forces using SingleNN, and uncertainties were calculated

in the same PyTorch framework.

Fig. 4.4 shows the energy parity plots of the training, validation, and test

sets. The parity is good in all cases, and root mean squared errors (RMSEs)

are 0.003, 0.0023, 0.003 eV/atom for train, validation, and test, respectively.

Fig. 4.5 shows the distributions of standard errors of confidence for the three

datasets. The distributions are very similar and mostly overlapping. Fig. 4.6

shows the parity plot of the test dataset with 95% prediction intervals. The

true values are within the prediction intervals for 98% of the dataset, which is

close to 95% and shows the delta method provides quantitatively reasonable

uncertainties in this case. The main result is that similar datasets with the

same accuracy using the model will have similar distributions of uncertainties.

94

Figure 4.4: Parity plot of SingleNN.

Figure 4.5: Distribution of uncertainties (standard error confidence).

Figure 4.6: Parity plot with 95% prediction intervals for test set.

95

Next we use the same potential to predict on a new dataset. If the new

dataset is dissimilar from the training data, we expect the uncertainties to be

high. While the training set had 3.934 Å lattice constants, the new dataset

has 4.034 and 4.134 Å lattice constants, which we will refer to as predict-4.0

and 4.1 datasets. As a result, we expect the fingerprints to differ from those

of the train set, i.e. we know we are extrapolating here. Fig. 4.7 shows the

energy parity plots for the predict sets with 95% prediction intervals. The

predictions are offset with an error, and the uncertainties are clearly much

larger than those for the test dataset from Fig. 4.6. Table 4.1 shows the

average standard error of confidence/prediction for the datasets. Training

and test datasets have around the same standard error confidence of 0.002

eV/atom, and predict-4.0 and 4.1 sets have higher uncertainties of 0.023 and

0.034 eV/atom, respectively, which are one order of magnitude larger than

training and test. Since this uncertainty is much larger, it could indicate that

the model is extrapolating on the predict datasets, and the parity plots (Fig.

4.7) seem to indicate this.

We examine the fingerprints, and Fig. 4.8 shows an example fingerprint for

the train and predict datasets. There are regions where the predict-4.0 and 4.1

atoms’ fingerprints are outside of the training distributions, which is suggestive

of extrapolation. For predict-4.0, the true values are within the prediction

intervals for 75% of the dataset, which is not that close to 95%, and for predict-

4.1, the true values are within the prediction intervals for 0% of the dataset.

This seems to indicate that the prediction interval becomes less quantitatively

accurate as the extrapolation increases. However when the uncertainty is much

larger than the training uncertainties, the model is likely extrapolating, and

we should not trust the prediction. Therefore this uncertainty method helps

identify the data regions where a model extrapolates. Fig. 4.9 shows the

96

standard error confidence vs. absolute energy error, and their distributions for

test and predict datasets. Fig. 4.9 shows the general trend that uncertainty

from the delta method increases when true error increases. The trend is most

obvious in a heterogeneous dataset.

Table 4.1: Average standard errors of datasets

Dataset Average
Standard Error
Confidence (eV/atom)

Average
Standard Error
Prediction (eV/atom)

Test 0.0020 0.0036
Predict 4.0 0.0234 0.0235
Predict 4.1 0.0336 0.0337

Figure 4.7: Prediction on new lattice datasets, uncertainty may be much
larger in an extrapolation region.

Figure 4.8: The predict-4.0 and 4.1 datasets have fingerprints outside of range
of training distribution (fingerprint example shown is η = 0 with Pd center
atoms).

97

Figure 4.9: Standard error from delta method vs. absolute error and their
distributions.

Uncertainties after retraining

Next we retrain the potential with some of the predict-4.0 and 4.1 data

and check how uncertainties are affected. We expect the uncertainties to

decrease after retraining. We added 64% of each predict-4.0 and 4.1 dataset,

or 365 data points each, and retrained. Fig. 4.10 shows the energy parity

plots of the new training and predict sets. After retraining, the predict set is

on parity and no longer offset. The true values are within the prediction

intervals for 98.7% of the training data and 98.5% of the predict data, which

are close to the theoretical 95% and show the uncertainties calculated from

the delta method are quantitatively reasonable. Fig. 4.11 shows the updated

standard error confidence vs. absolute energy error, and their distributions

for test and predict datasets. After retraining, the standard errors across

datasets are mostly overlapping, and the average standard errors are the

98

same for the datasets. The average standard error confidence and predict are

0.002 and 0.003 eV/atom, respectively. Since we retrained on the predict-4.0

and 4.1 datasets, we are no longer extrapolating on that data and the

uncertainties updated to reflect this: they are no longer an order of

magnitude larger than the train sets’ as was the case before retraining. We

can use this uncertainty method to iteratively retrain a potential by adding

data with high uncertainties. This is sometimes called active learning.

Figure 4.10: Parity plot after retraining.

99

Figure 4.11: Distribution of uncertainties after retraining.

In the calculation of the Fisher information matrix, we used the errors of

energies only, although we trained on energies and forces. From a theoretical

perspective, the Fisher information should include some information about

force errors, but exactly how much to include is nonobvious. By using only

loss of energies, we save computational time for calculating the Fisher

information, and the uncertainty measurement still accomplishes the

objective and is quantitatively reasonable. Therefore in practice, using only

the loss of energies for the Fisher information works well.

We can also extend uncertainty to other properties such as forces. For

this case, in Equation 4.1, g(θ̂) is force, which is − ∂E
∂position

, where E

represents energy. We obtain g′(θ̂) through automatic differentiation by

taking the derivative of − ∂E
∂position

with respect to model parameters. In this

way, we can use the delta method to calculate uncertainties for other

100

quantities of interest. Further work can be done to investigate the quality

and methods for force uncertainties of NN potentials.

There is a possibility for fast approximations of the Fisher information

after retraining. If we retrain by adding one or a few new training points, we

may want a cheaper calculation of the Fisher information matrix. The Fisher

information matrix can be linearly separated by training data since the loss

is a sum over training data points. If the parameters of the model did not

change from retraining, then the new Fisher information is the summation of

the original Fisher information and the Fisher information for the new training

points. Since retraining likely alters the model parameters, the previous Fisher

information from old model parameters is an approximation. If only a few

training points are added and model parameters do not change much, taking

the Fisher information of the new training points and adding it to the original

can be a fast approximation of the true Fisher information. Further work is

required to determine when this approximation is adequate.

4.4 Conclusions

The delta method is a fast and easy way to estimate uncertainty. It

requires the Hessian of the loss and gradient with respect to model

parameters, and these are obtainable with most machine learning packages

using automatic differentiation. The delta method is applicable to most

models that are parametric and have nonzero gradients with respect to

parameters. The uncertainty estimate will depend on the training data,

model, and input (point) for which the uncertainty is calculated. The delta

method is an alternative to ensemble or bootstrapping methods for obtaining

uncertainty estimates, and uncertainty estimates are important because they

can help determine when a model is extrapolating and increase model

reliability.

101

We showed an application of the delta method to a high dimensional NN

potential in molecular simulation. We illustrated how we can iteratively retrain

a model by adding data with high uncertainties to improve it. This could also

be done on-the-fly, e.g., while running an MD simulation with an ML potential.

The uncertainty can determine the longest timescale MD simulation that is

valid for a potential, or to identify when additional data should be added to

the training data to improve it. The utility of the delta method shown here

extends far beyond molecular simulation, and it can also be applied to many

other applications that rely on linear or nonlinear regression models.

102

5 Model Specific to Model General

Uncertainty for Physical Properties

5.1 Introduction

Many physical properties are derived from models. For example, reaction

rates in a chemical reaction network can be determined from a kinetics

model.171–173 Thermal diffusivity of a material can be derived from a model

that includes the differential equations governing heat transfer.174 We

calculate properties such as diffusion, viscosity, density, elastic modulus from

MD simulations and further modeling such as Arrhenius equation,

adjustments for finite size effect, extrapolating to alternate conditions.175–177

We would like to report the physical property and its sensitivity to design

choices in model and data selection. We can classify uncertainty into its

sources, and different frameworks have been proposed.178 For deriving

physical properties, the sources of uncertainty may have a clear

interpretation, such as different sources of experimental error, model

selection, and parameter uncertainty.179 Another common framework

describes uncertainty as aleatoric or epistemic. Aleatoric refers to

randomness in the experiment, or observations, while epistemic refers to

ignorance about the best model.180,181 Based on this description, uncertainty

from process variation and noise in observations can be considered aleatoric,

while uncertainty in parameters, model specification, and dataset shift can

be classified as epistemic uncertainty. Sometimes the different uncertainties

are not clear cut180 or not feasible to separate.178

The uncertainty could be in the form of a confidence interval (frequentist)

or even a full probability distribution (Bayesian). In Chapter 4, we described

103

some methods of obtaining uncertainty including ensembles, delta method,

and Gaussian process, while focusing on the delta method. Apart from

Gaussian process, the methods were specific to standard nonlinear regression.

A point estimate of the parameters was obtained by minimizing mean

squared error, and the parameter and model prediction standard errors were

obtained from the separate methods described. Determining a point estimate

of the parameters and the confidence intervals falls under the frequentist

approach. In an alternate setting, one could update a distribution over

parameters as data is observed, and obtain uncertainties using the

distribution. This would be a Bayesian approach, and examples of methods

under this setting include probabilistic graphical models, Bayesian regression,

and Gaussian process.182

Given the various possible sources of uncertainty and methods of

calculation, this chapter aims to answer ”what is the uncertainty really

telling us”. We use an example of obtaining physical properties from an

equation of state for solid. The physical properties are equilibrium volume,

energy, and bulk modulus. We obtain uncertainties using three methods:

delta method, Bayesian nonlinear regression, and Gaussian process. Through

comparison between uncertainties obtained from the methods, we show that

the delta method and Bayesian nonlinear regression give model specific

uncertainty while Gaussian process gives model general uncertainty, although

they can all be considered epistemic uncertainty. In Section 5.1.1, we provide

background and motivation for the equation of state problem. In Section

5.1.2, we provide brief description of probabilistic modeling and further

applications in engineering.

104

5.1.1 Equation of state

The equation of state (EOS) of a solid relates pressure-volume or energy-

volume. The EOS is important in fields such as materials, condensed matter,

and geophysics, and can be used to extract the equilibrium volume and bulk

modulus.183 The pressure P , bulk modulus B can be expressed as:

P = −dE
dV

(5.1)

B = −V dP
dV

= V
d2E

dV 2
(5.2)

where E is energy and V is volume. From Eq. 5.2, in an energy-volume

EOS, the bulk modulus depends on the second derivative, thereby increasing

its variance. Many physical properties of interest rely on derivatives, have

higher variance, making it more important to quantify their uncertainty.

Researchers have developed many EOS of different analytical forms, and

they aim to describe a range of solids accurately.184–188 Typically the analytical

function has some parameters which are fit to experimental or computational

data using nonlinear regression. It is not necessarily clear which analytical

function is most accurate for obtaining physical properties of a particular solid.

Therefore uncertainty exists with regard to model selection and a specific

model’s parameters.

Many of the analytical functions have the equilibrium energy, volume, and

bulk modulus as parameters themselves, which makes their standard error

available from the inverse Fisher information matrix (Section 4.2). For other

functions, it is possible to calculate the uncertainty of the physical property

under nonlinear regression and the delta method when the derivative of the

property w.r.t. function parameters exists.

105

5.1.2 Probabilistic models in engineering applications

A probabilistic graphical model (PGM) uses a graph to represent a joint

probability over variables. The graph encodes a set of conditional

independence assumptions between its nodes, which represent the random

variables. A probability distribution that satisfies the independencies

associated with the graph can be factorized according to the graph, which is

a theorem.189 This is helpful because it is often more intuitive to first specify

a graph over variables and then derive a factorized joint distribution. Some

examples of PGMs are Hidden Markov models, Naive Bayes, and Bayesian

regression. Fig. 5.1 shows a graphical representation of Bayesian regression.

An equivalent interpretation is the joint probability factorized according to

the chain rule and conditional probabilities of the graph, shown in Eq. 5.3.

x f(x,θ)

θ

y

ε

Figure 5.1: Graphical representation of Bayesian regression.

p(x, y,θ, ε) = p(x)p(θ)p(ε)p(y|x,θ, ε) (5.3)

A PGM can be advantageous to use when some random variables have a

clear natural distribution, such as Poisson, Bernoulli, or when variables have

clear dependence or independence relationships. Domain knowledge can

identify high relevance variables and reasonable independence relations to

build a PGM that closely represents reality.

Many engineering and science applications can benefit from PGMs, and

we review some here. One benefit of probabilistic models is further

customization of error structure among observations, as shown by Miki et al.

106

to deduce ionization rate of atomic nitrogen.171 Napp et al. used PGM to

model chemical reaction networks.173 Other physical properties such as

modulus of elasticity190 and crack propagation in materials191 were found

using probabilistic models. Researchers have integrated chemical process

knowledge with probabilistic modeling. Bayesian regression was used to

model pressure for safe and reliable operation in a natural gas regulating and

metering station.192 Lu et al. used time-series PGM for regression of

variables in a hydrocracking process,193 and Chen et al. used probabilistic

principal components analysis and mixture model for trend and fault

identification of industrial propylene polymerization.194 There are clearly

many applications of PGMs and Bayesian methods, also in the

pharmaceutical industry195 and astronomy field.196

Another useful probabilistic model is the Gaussian process. A Gaussian

process (GP) is a collection of random variables such that any finite number

of them have a joint multivariate normal distribution. The distribution of the

GP is a distribution of functions with a continuous domain. For the EOS

example, we develop a GP with joint distribution over a function and its

first and second derivative observations to easily calculate bulk modulus and

minimum volume. We describe our implementation in Section 5.2.2. Including

derivatives in the collection of GP random variables can be useful to train

with function observations and derivatives, such as energy and forces. Indeed,

the Gaussian Approximation Potential (GAP) uses GP to fit energies, forces,

and virial stress (derivative of energy w.r.t. lattice deformation) of atomic

configurations.47,197–203 GP have also been used as surrogate models to speed

up nudged elastic band calculation or geometry optimization, sometimes using

their uncertainty to guide training dataset selection.204–206 GP model was used

to predict yield and lower heating value of fluidized bed gasifier.207

107

5.2 Methods

5.2.1 Approximate inference for PGMs

Given a PGM, we typically want to answer queries about its probability

distribution. This is called inference. One of the most common queries is

computing the posterior distribution, or conditional probability of random

variables in the PGM given data. In the Bayesian regression in Section 5.1.2,

the posterior distribution is p(θ, ε|x, y). To compute the distribution, we use

approximate inference methods, meaning they approximate the target

distribution. Specifically we use variational inference and Markov chain

Monte Carlo (MCMC). We focus on these methods because they are widely

used for many Bayesian models. Variational inference is usually faster than

MCMC, while MCMC is guaranteed to asymptotically produce samples from

the true target distribution.208,209

Variational inference

In variational inference, we approximate the posterior using a surrogate

distribution called the variational distribution q. Continuing the Bayesian

regression example, our variational distribution is q(θ, ε). We assume a form

for q, and some common choices are multivariate normal or mean-field, which

is a product of independent normals for each parameter. To find q, we

minimize the KL-divergence between q and the true posterior,

KL(q(θ, ε)||p(θ, ε|x, y)). The KL has an intractable term log p(x, y), so we

remove it from our optimization, and actually minimize

Eq[log q(θ, ε) − log p(θ, x, y, ε)], which is the negative ELBO (evidence lower

bound).208 Minimizing KL is equivalent to maximizing ELBO.

108

Based on Eq. 5.3, we can factorize the joint probability, and our

minimization problem is

q∗(θ, ε) = argmin
q∈Q

Eq[log q(θ, ε)− log p(θ)− log p(ε)− log p(y|θ, ε, x)− log p(x)]

(5.4)

We note the term log p(x) does not affect the optimization solution for q.

Also, the terms on the right appear in maximum likelihood estimation (MLE)

and maximum a posteriori (MAP) estimation. Specifically one could solve

θ̂MLE, ε̂MLE = argmax
θ,ε

log p(y|θ, ε, x) (5.5)

θ̂MAP, ε̂MAP = argmax
θ,ε

log p(θ) + log p(ε) + log p(y|θ, ε, x). (5.6)

The difference here is that MLE and MAP return point estimates while the

optimization of 5.4 returns a distribution q.

In our model, we must define prior probability distributions for θ and ε.

We also select a form for q, which was multivariate normal. Now we estimate

the parameters of q, in our case mean and covariance matrix, by gradient

descent and estimates of the ELBO gradient. This method is stochastic

variational inference (SVI),210–212 and software such as pyro and

tensorflow-probability have implemented SVI and automatic calculation

of ELBO and its gradients.

We used pyro and defined normal distribution priors for parameters in

the EOS models. The prior for ε was normal with mean zero and standard

deviation with prior Uniform(0, 1). Negative ELBO was minimized with Adam

optimizer213 until it stopped decreasing.

109

Markov chain Monte Carlo

Markov chain Monte Carlo methods generate samples from a probability

distribution. A proposed sample is accepted or rejected according to some

criterion related to the target distribution. The next sample is generated by

random walk or another algorithm. Hamiltonian Monte Carlo (HMC) is an

efficient and well-studied MCMC method, and uses Hamiltonian dynamics

from physics to propose the next sample.214 We used the NUTS method215 to

generate HMC samples of posterior, implemented in pyro, and inspected the

sample trajectory to retain samples after convergence.

5.2.2 Gaussian process joint including derivatives

A function f is a Gaussian process with mean m(x) and covariance kernel

k(xi, xj) if

[f(x1), ..., f(xn)] ∼ N (µ,K) (5.7)

µi = m(xi)

Kij = k(xi, xj).

To perform inference with a GP (predict on test data), we note that the

joint distribution between noisy training data y = f(X) + ε and test data

f(X∗) = f∗, where ε ∼ N(0, σ2), is

y

f∗

 ∼ N
0,

K(X,X) + σ2I K(X,X∗)

K(X∗, X) K(X∗, X∗)


 . (5.8)

GP is assumed to have zero mean for convenience. To deal with nonzero

means, we can subtract m(X) to create a zero mean GP and add back m(X∗)

after inference.

110

We use the conditional rule for multivariate normals, therefore

p(f∗|X,y, X∗) is multivariate normal with mean f̄∗ and cov(f∗), where

f̄∗ = K(X∗, X)[K(X,X) + σ2I]
−1

y (5.9)

cov(f∗) = K(X∗, X∗)−K(X∗, X)[K(X,X) + σ2I]
−1
K(X,X∗).

Now suppose y and f∗ may include arbitrary number and location of

derivative and second derivative observations, for example

X =


X0

X1

X2

 , y =


f(X0)

f ′(X1)

f ′′(X2)

 . (5.10)

Then the covariance matrices K(X,X), K(X,X∗), K(X∗, X), K(X∗, X∗)

must include covariances between functions and derivatives, functions and

second derivatives, derivatives and derivatives, etc. The covariances are

cov

(
f(xi),

∂f(xj)

∂xj

)
=
∂k(xi, xj)

∂xj
, cov

(
∂f(xi)

∂xi
,
∂f(xj)

∂xj

)
=
∂2k(xi, xj)

∂xi∂xj
(5.11)

etc.131 Suppose X0 ∈ Rn×1, X1 ∈ Rm×1, we define an ”element-wise”

derivative

∂K(X0, X1)

∂�XT
1

=

[
∂K(X0, x1,1)

∂x1,1

, ...,
∂K(X0, x1,m)

∂x1,m

]
∈ Rn×m. (5.12)

111

Therefore K(X,X), K(X,X∗), etc. have blockwise covariances,216 as an

example

K(X,X) =


K(X0, X0) ∂K(X0,X1)

∂�XT
1

∂2K(X0,X2)

(∂�XT
2)2

∂K(X1,X0)
∂�X1

∂2K(X1,X1)

∂�X1∂�XT
1

∂3K(X1,X2)

∂�X1(∂�XT
2)2

∂2K(X2,X0)
(∂�X2)2

∂3K(X2,X1)

(∂�X2)2∂�XT
1

∂4K(X2,X2)

(∂�X2)2(∂�XT
2)2

 , (5.13)

and we apply Eq. 5.9 as before.

In practice, the kernel function k is selected, and its parameters are

optimized. Some kernel functions are linear, periodic, and radial basis function

(RBF), and selecting a kernel is described in Duvenaud 2014.217 We used the

RBF kernel, Eq. 5.14, because it works well for many functions.

k(xi, xj) = λ exp

(
−(xi − xj)2

2l2

)
(5.14)

The RBF kernel has two parameters, scale λ and lengthscale l. We

optimized these parameters using gpytorch and by maximizing the log

marginal likelihood p(y|X).131 We used vectorized-map and automatic

differentiation in jax to efficiently calculate derivatives as those required in

Eq. 5.13.

To find the posterior over minimum volume, energy, and bulk modulus, we

took 1,000 joint samples of the function, first and second derivatives at 1,000

linspaced points across the volume range and smoothed them with interp1d.

To find minimum volume, we used the root-finder brentq in scipy over the

first derivative.218 The corresponding sampled energies at the volumes were

the distribution of minimum energies, and corresponding second derivatives

multiplied with minimum volumes were the distribution of bulk moduli.

112

5.3 Results

We discuss the data for the EOS and show results for uncertainties from

nonlinear regression and the delta method, Bayesian regression, and the

Gaussian process.

5.3.1 Data

Fig. 5.2 shows the data for FCC Pd and Au using DFT calculation. The

data are from Boes 2016 and 2017.35,219 The EOS calculated in the papers

used all of the data points shown in Fig. 5.2. We used the data closer to the

minimum, the shaded regions: 24 and 29 points for Pd and Au, respectively.

We chose the narrower range to maintain homoscedastic residuals across the

different EOS models. The range of data for training makes a significant

difference in the physical properties, and the spread across models. In addition,

there is not a clear way to determine which range of data should be used. This

is further motivation for reporting uncertainties, and the uncertainties reported

depend on the data selected.

113

(a) Pd (b) Au

Figure 5.2: Data for EOS. Shaded region represents data used in training.

5.3.2 Nonlinear regression

We perform nonlinear regression for common equations of state, and Table

5.1 shows the result. The error is low for all of the models. Most minimum

volumes fall within 0.01 and 0.03 Å
3

for Pd and Au, respectively. The

minimum energies are almost the same for all models, and the bulk moduli

fall within 15 and 20 GPa for Pd and Au, respectively. If we used the entire

dataset from Fig. 5.2, the ranges for minimum energies, volumes, and bulk

moduli would be much wider, and the point estimates would be different. For

example, using SJ and the entire datasets, the bulk moduli for Pd and Au are

both 6 GPa larger than our results.35,219

114

Table 5.1: Equilibrium volume, equilibrium energy, bulk modulus from
different equations of state

Equation of State V
(Å3)

E
(eV)

B
(GPa)

RMSE
(eV)

MAE
(eV)

Pd Stabilized Jellium183 15.304 -5.215 169 1.0e-4 8.5e-5
Anton-Schmidt220 15.303 -5.214 168 7.4e-5 6.6e-5
Polynomial3/Taylor 15.331 -5.216 180 1.9e-3 1.7e-3
Murnaghan221 15.302 -5.214 165 4.6e-4 4.0e-4
Birch/Birch-Murnaghan222 15.303 -5.214 168 6.8e-5 6.1e-5
Poirier-Tarantola185 15.307 -5.215 171 3.9e-4 3.3e-4
Vinet222 15.303 -5.215 168 4.1e-5 3.3e-5

Au Stabilized Jellium 17.960 -3.222 141 2.1e-4 1.7e-4
Anton-Schmidt 17.968 -3.221 139 3.2e-4 2.6e-4
Polynomial3/Taylor 17.927 -3.225 160 3.9e-3 3.4e-3
Murnaghan 17.984 -3.221 137 9.5e-4 8.2e-4
Birch/Birch-Murnaghan 17.967 -3.221 140 2.8e-4 2.2e-4
Poirier-Tarantola 17.950 -3.222 144 7.4e-4 6.3e-4
Vinet 17.963 -3.222 140 1.8e-4 9.6e-5

Next we calculated standard errors for a set of the models, shown in Table

5.2. We chose different models across Pd and Au to show generalizability of

our results, and we chose models for each element that had slightly different

bulk modulus. The delta method follows Sections 4.2 and 4.2.1. The standard

errors are larger for models with higher RMSE because the inverse Fisher

information is scaled with the model error. The standard errors confidence for

minimum volume and energy are quantitatively reasonable given the spreads

in Table 5.1. For bulk modulus, if we consider 95% confidence interval (± ∼

2 · s.e.), the selected models’ intervals do not overlap with each other. Hence

the uncertainties from the delta method are inherent to the model used, which

we describe as model-specific uncertainty.

115

Table 5.2: Standard error confidence of physical properties from delta method

Standard Error Confidence

Equation of State V (Å3) E (eV) B (GPa)

Pd Birch/Birch-Murnaghan 0.0011 0.0001 0.13
Poirier-Tarantola 0.0060 0.0004 0.82

Au Murnaghan 0.0138 0.0010 1.40
Vinet 0.0028 0.0003 0.25

5.3.3 Bayesian regression

We performed Bayesian regression on the same set of models. We used

stochastic variational inference (SVI) with multivariate normal variational

distribution and HMC to find the posterior distribution over parameters, as

described in Section 5.2.1. For SVI, we used priors over parameters that were

close to the nonlinear regression solution. This is analogous to choosing a good

initial guess for nonlinear regression, and greatly helped the optimization. The

ELBO estimates were noisy, and optimization for one model required around

5 minutes on a laptop. The HMC is more robust to the initial guess, however

it required around 20 minutes for one model. Fig. 5.3 compares the posteriors

from SVI, HMC, and the 95% confidence interval from the delta method

for Pd Poirier-Tarantola. Figures for additional models are in Appendix

E. In Bayesian setting, the credible interval is analogous to the prediction

interval, and 1− α credible interval for θ is defined as
∫ b
a
p(θ|x, y)dθ = 1− α.

The statistical interpretation is technically different than a confidence or

prediction interval, but researchers have shown that they are quantitatively

similar.223–225 We note that Fig. 5.3 shows the marginal posteriors over

parameters, although we did find the joint posteriors. The HMC posterior

means are close to the parameters found using nonlinear regression. Between

SVI and HMC, HMC predicts a tighter posterior with a mean closer to the

116

nonlinear regression result. This is expected because HMC can predict the

posterior more accurately than variational inference. For this model, the delta

method 95% confidence intervals are wider than the SVI or HMC credible

intervals. However, they are still quantitatively close, which was also observed

for the other models. This indicates that uncertainty from Bayesian regression

in this setting is also model-specific.

Figure 5.3: Comparison of HMC, Variational inference posteriors and delta
method confidence interval for Pd Poirier-Tarantola.

5.3.4 Gaussian process

In this section, we show uncertainties from the Gaussian process for Pd.

Results for Au are in Appendix E. Fig. 5.4 shows the Gaussian process

117

posterior. Each sample is from the joint distribution over the function, first

and second derivatives. This means that for one sample, the function, first

and second derivatives correspond with each other. The variance, especially

around the lowest and highest volumes, grows larger as the derivative order

increases. Clearly we would not expect the GP to extrapolate well outside of

the training data range.

118

Figure 5.4: Gaussian process posterior for Pd EOS. a): function, b): first
derivative, c): second derivative.

Figs. 5.5, 5.6, 5.7 show the Gaussian process distribution compared

with previous methods for minimum volume, energy, and bulk modulus,

119

respectively. For all of the physical properties, the GP has the widest

distribution compared with other methods. The GP distribution covers the

predictions for almost all EOS models, while Bayesian regression posteriors

do not always overlap across models, especially for minimum energy and bulk

modulus, Figs. 5.6 and 5.7. The delta method intervals do not overlap across

models for bulk modulus. The results show that GP uncertainties are model-

general because their posterior distributions include almost any model that

could be the true EOS.

Figure 5.5: Comparison of GP, Bayesian regression, and nonlinear regression
uncertainties with different model predictions for minimum volume.

120

Figure 5.6: Comparison of GP, Bayesian regression, and nonlinear regression
uncertainties with different model predictions for minimum energy.

Figure 5.7: Comparison of GP, Bayesian regression, and nonlinear regression
uncertainties with different model predictions for bulk modulus.

121

5.3.5 Overall comparison of methods

Here we compare the methods, including their ease of use. Between

nonlinear and Bayesian regression, nonlinear regression is easier to set up, runs

much faster, and is more commonly used. We showed that the delta method

uncertainties are quantitatively close to those from Bayesian regression.

Therefore if model parameters are expected to be normally distributed,

nonlinear regression is recommended.

Bayesian regression is harder to set up. At the time of writing, pyro is

generally easier to use than tensorflow-probability. For each problem, the

probabilistic model and variational distribution must be defined. The software

improve ease of use with automatically calculated ELBO and integrated

optimizers. In these problems, Bayesian regression was slower than other

methods, requiring around 5 and 20 minutes for SVI and HMC, respectively.

Bayesian regression may outperform nonlinear regression if the parameters

have a non-normal distribution, such as skewed, uniform, log-normal, discrete

distribution, etc.

We showed both nonlinear and Bayesian regression give model-specific

uncertainty. If uncertainty across models is required, the implementations

would need to be modified and rerun for separate models. To avoid this,

we can use Gaussian process. GPs are relatively easy to use with many

available software such as scikit-learn and gpytorch. Optimizing the

hyperparameters for our models required a few minutes, and calculating the

covariance and distribution samples was even faster. However GPs naively

scale with O(n3) with n as number of data points. There are ongoing research

to improve GP scaling.149,226–230 We showed that the GP uncertainty is larger

than other methods and includes uncertainty from model selection. Using GP,

122

we can report uncertainty across a large model space without repeatedly fitting

many different model forms.

5.4 Conclusions

Uncertainty arises from different sources, and there are alternate methods

of calculating uncertainty. We reviewed background and literature applications

in science and engineering of probabilistic graphical models and Gaussian

process. There may be many analytical forms of a model that calculates

physical properties, for example an equation of state. This further motivates an

analysis of what sources of uncertainty are included in a particular uncertainty

calculation. We compare nonlinear regression, Bayesian regression, and

Gaussian process for their uncertainty quantification. Nonlinear regression

gives a point estimate of the physical property, dependent on the specific

model. The delta method can find a standard error and confidence or

prediction interval in most cases. The delta method interval is wider for models

with higher error, and is close to the posterior found from Bayesian regression.

We used HMC and SVI for Bayesian inference, and HMC gave more consistent

posteriors than SVI, at an expense of higher compute. Both the delta method

and Bayesian regression give model-specific uncertainty, which is not expected

to include uncertainty arising from model selection. We developed the joint

GP over a function, its first and second derivatives to conveniently find

distributions of physical properties requiring derivatives. The GP uncertainties

cover almost all of the alternative EOS models’ physical property predictions.

Hence we conclude that GP gives model-general uncertainty which includes

uncertainty from model selection.

123

6 Conclusions

This dissertation applied machine learning (ML) to address challenges

in atomic simulation. ML allowed progress in analyzing structure of data,

accelerating high accuracy computation, and quantifying uncertainty of

models. In the future, we expect more integration between ML and simulation

methods.

6.1 ML potentials to accelerate simulations

We built a neural net potential for a complex liquid alloy system. The

Ni-Al-W system was especially challenging because it is liquid and has three

chemical elements with sparse W composition. All of these reasons increased

the system dimensionality. Ideally, we also wanted to investigate more

temperatures, volumes, and compositions, which would further increase system

complexity. We successfully integrated the potential with molecular dynamics

simulation and obtained similar results to ab initio with NVT.

There are several key takeaways from the work. For parameterized

fingerprints, the hyperparameter search must be completed every time the

system changes chemically or structurally, as the hyperparameters can

significantly change the potential accuracy. In future work, it would be best to

automate the parameter search. Another takeaway is that if the MD runs for

enough time steps, the configuration will likely reach an extrapolation region.

Therefore we need to determine the longest MD simulation required for data

collection and plan accordingly for the size and diversity of training dataset.

We believe the delta method uncertainty could be integrated with MD to

determine when the system reaches extrapolation. Currently, integrating ML

models with high performance MD code is a challenge in the field. Researchers

have developed jax-MD with differentiable MD and easy integration between

124

ML potentials and MD.231 There could be promising future work with

differentiable MD,232 however the code is currently not as fast as production

MD code such as LAMMPS.

We used the Behler-Parrinello NN, however the number of G3 fingerprints

(and therefore model complexity) scales quadratically with the number of

chemical species.169 In addition, many models with graph and convolution-

based fingerprints are reaching state-of-the-art performance.233–243 In future

work, these models could be tested using the liquid alloy system. For the best

model, extrapolation in MD may still be a concern, and the solution may be

checking uncertainty during MD steps and reverting to physical potential (or

DFT) for high uncertainty and the ML potential otherwise.

6.2 Extensions in analyzing liquid atomic

configurations

We used MD simulation with a physical potential for liquid Al-Si. The

diffusion and viscosities were calculated at many temperatures, and a Stokes-

Einstein deviation occurred at temperatures near the melting point. We found

significant clusters using Voronoi tessellation and agglomerative clustering, and

developed per-atom diffusion and viscosity methods. The clusters were found

to have a minimal impact on diffusion but a measurable impact on viscosity,

which could explain the observed Stokes-Einstein deviation.

One of the challenges as simulations move toward longer length scales is

increased data generation. We are already saving thermodynamic data and

especially atomic data at limited frequency to save on storage space. Large

amounts of data require longer times and are harder to analyze and transfer.

Researchers have set up distributed analysis systems to combat these issues;244

it requires additional hardware which is not always available.

125

In our methods, we focused on the icosahedral atoms determined by

Voronoi tessellation. Alternatively, we could use ML methods to discover

relevant structure within the atomic configurations. In this case it may be

necessary to define a specific task such as phase classification.245 In addition,

the per-atom methods we developed can be used in other applications.

6.3 Uncertainty for models and physical properties

We discussed the delta method, implemented it for a NN potential, and

showed that it can determine input that extrapolates. For future work, the

delta method can be included with on-the-fly MD. We can also extend the

delta method for graph-NNs and experiment with approximations for large

NNs.136 Other research uses the loss Hessian for second order optimization

methods for training.246 The computational speed of delta method may also

be increased by using Hessian-vector products.157

We contributed to deeper understanding of uncertainty obtained from

different methods. We showed that Bayesian nonlinear regression and delta

method uncertainties are consistent with each other, and their uncertainties

are with respect to the specific model. We developed Gaussian process (GP)

with first and second derivative information and showed GP variance includes

model selection uncertainty. This is because GP posterior is a distribution of

all reasonable models given the data. The developed GP framework can be

used to train with derivative information. In future work, we can analyze

Bayesian NNs’ uncertainty and determine if it is model-general or model-

specific. There are additional applications for uncertainty quantification with

methods from Chapter 5 such as adsorption isotherms and spectroscopy. There

are also many domain problems that can benefit from probabilistic graphical

models, such as reaction rate determination, crack propagation in materials,

126

and process operations in chemical plants, as shown by our literature review

in Section 5.1.2.

We look forward to continued advancement in these important problems

around materials simulation.

127

References
[1] David Dubbeldam, Sof́ıa Calero, Donald E. Ellis, and Randall Q. Snurr.

RASPA: Molecular simulation software for adsorption and diffusion
in flexible nanoporous materials. Molecular Simulation, 42(2):81–101,
2015. doi: 10.1080/08927022.2015.1010082. URL https://doi.org/

10.1080/08927022.2015.1010082.

[2] Z. Guo, N. Saunders, A.P. Miodownik, and J.-Ph. Schillé. Modelling
of materials properties and behaviour critical to casting simulation.
Materials Science and Engineering: A, 413-414:465–469, 2005. doi:
10.1016/j.msea.2005.09.036. URL https://doi.org/10.1016/j.msea.

2005.09.036.

[3] Liang-Feng Huang, Xue-Zeng Lu, Emrys Tennessen, and James M.
Rondinelli. An efficient ab-initio quasiharmonic approach for the
thermodynamics of solids. Computational Materials Science, 120:84–
93, 2016. doi: 10.1016/j.commatsci.2016.04.012. URL https://doi.

org/10.1016/j.commatsci.2016.04.012.

[4] Eric M. Lopato, Emily A. Eikey, Zoe C. Simon, Seoin Back, Kevin
Tran, Jacqueline Lewis, Jakub F. Kowalewski, Sadegh Yazdi, John R.
Kitchin, Zachary W. Ulissi, Jill E. Millstone, and Stefan Bernhard.
Parallelized screening of characterized and DFT-modeled bimetallic
colloidal cocatalysts for photocatalytic hydrogen evolution. ACS
Catalysis, 10(7):4244–4252, 2020. doi: 10.1021/acscatal.9b05404. URL
https://doi.org/10.1021/acscatal.9b05404.

[5] Kevin Tran and Zachary W. Ulissi. Active learning across intermetallics
to guide discovery of electrocatalysts for CO2 reduction and H2 evolution.
Nature Catalysis, 1(9):696–703, 2018. doi: 10.1038/s41929-018-0142-1.
URL https://doi.org/10.1038/s41929-018-0142-1.

[6] Edward O. Pyzer-Knapp, Linjiang Chen, Graeme M. Day, and
Andrew I. Cooper. Accelerating computational discovery of porous
solids through improved navigation of energy-structure-function maps.
Science Advances, 7(33), 2021. doi: 10.1126/sciadv.abi4763. URL
https://doi.org/10.1126/sciadv.abi4763.

[7] Arunima K. Singh, Kiran Mathew, Houlong L. Zhuang, and Richard G.
Hennig. Computational screening of 2D materials for photocatalysis.
The Journal of Physical Chemistry Letters, 6(6):1087–1098, 2015. doi:
10.1021/jz502646d. URL https://doi.org/10.1021/jz502646d.

[8] Kyoungdoc Kim, Logan Ward, Jiangang He, Amar Krishna, Ankit
Agrawal, and C. Wolverton. Machine-learning-accelerated high-
throughput materials screening: Discovery of novel quaternary heusler
compounds. Physical Review Materials, 2(12):123801, 2018. doi:

128

https://doi.org/10.1080/08927022.2015.1010082
https://doi.org/10.1080/08927022.2015.1010082
https://doi.org/10.1016/j.msea.2005.09.036
https://doi.org/10.1016/j.msea.2005.09.036
https://doi.org/10.1016/j.commatsci.2016.04.012
https://doi.org/10.1016/j.commatsci.2016.04.012
https://doi.org/10.1021/acscatal.9b05404
https://doi.org/10.1038/s41929-018-0142-1
https://doi.org/10.1126/sciadv.abi4763
https://doi.org/10.1021/jz502646d

10.1103/physrevmaterials.2.123801. URL https://doi.org/10.1103/

physrevmaterials.2.123801.

[9] Karlheinz Schwarz and Peter Blaha. DFT Calculations for Real Solids,
pages 227–259. Handbook of Solid State Chemistry. Wiley-VCH Verlag
GmbH & Co. KGaA, 2017. doi: 10.1002/9783527691036.hsscvol5022.
URL https://doi.org/10.1002/9783527691036.hsscvol5022.

[10] Errol G. Lewars. The Concept of the Potential Energy Surface, pages
9–49. Springer International Publishing, Cham, 2016. ISBN 978-3-319-
30916-3. doi: 10.1007/978-3-319-30916-3 2. URL https://doi.org/

10.1007/978-3-319-30916-3_2.

[11] David Sholl and Janice A Steckel. Density functional theory: A practical
introduction. John Wiley & Sons, 2011. doi: 10.1002/9780470447710.

[12] Murray S. Daw and M. I. Baskes. Embedded-atom method: Derivation
and application to impurities, surfaces, and other defects in metals.
Physical Review B, 29(12):6443–6453, 1984. doi: 10.1103/physrevb.29.
6443. URL https://doi.org/10.1103/physrevb.29.6443.

[13] Adri C. T. van Duin, Siddharth Dasgupta, Francois Lorant, and
William A. Goddard. ReaxFF: A reactive force field for hydrocarbons.
The Journal of Physical Chemistry A, 105(41):9396–9409, 2001. doi:
10.1021/jp004368u. URL https://doi.org/10.1021/jp004368u.

[14] S. Starikov, I. Gordeev, Y. Lysogorskiy, L. Kolotova, and S. Makarov.
Optimized interatomic potential for study of structure and phase
transitions in Si-Au and Si-Al systems. Computational Materials
Science, 184:109891, 2020. doi: 10.1016/j.commatsci.2020.109891. URL
https://doi.org/10.1016/j.commatsci.2020.109891.

[15] F Ercolessi and J. B Adams. Interatomic potentials from first-principles
calculations: The force-matching method. Europhysics Letters (EPL),
26(8):583–588, 1994. doi: 10.1209/0295-5075/26/8/005. URL https:

//doi.org/10.1209/0295-5075/26/8/005.

[16] C A Howells and Y Mishin. Angular-dependent interatomic potential for
the binary Ni-Cr system. Modelling and Simulation in Materials Science
and Engineering, 26(8):085008, 2018. doi: 10.1088/1361-651x/aae400.
URL https://doi.org/10.1088/1361-651x/aae400.

[17] John R. Kitchin. Machine learning in catalysis. Nature Catalysis, 1(4):
230–232, 2018. doi: 10.1038/s41929-018-0056-y. URL https://doi.

org/10.1038/s41929-018-0056-y.

[18] Mark E. Tuckerman, Yi Liu, Giovanni Ciccotti, and Glenn J. Martyna.
Non-Hamiltonian molecular dynamics: Generalizing Hamiltonian phase

129

https://doi.org/10.1103/physrevmaterials.2.123801
https://doi.org/10.1103/physrevmaterials.2.123801
https://doi.org/10.1002/9783527691036.hsscvol5022
https://doi.org/10.1007/978-3-319-30916-3_2
https://doi.org/10.1007/978-3-319-30916-3_2
https://doi.org/10.1103/physrevb.29.6443
https://doi.org/10.1021/jp004368u
https://doi.org/10.1016/j.commatsci.2020.109891
https://doi.org/10.1209/0295-5075/26/8/005
https://doi.org/10.1209/0295-5075/26/8/005
https://doi.org/10.1088/1361-651x/aae400
https://doi.org/10.1038/s41929-018-0056-y
https://doi.org/10.1038/s41929-018-0056-y

space principles to non-Hamiltonian systems. The Journal of Chemical
Physics, 115(4):1678–1702, 2001. doi: 10.1063/1.1378321. URL https:

//doi.org/10.1063/1.1378321.

[19] M.P. Allen and D.J. Tildesley. Computer Simulation of Liquids. Oxford
Science Publ. Clarendon Press, 1989. ISBN 9780198556459. URL https:

//books.google.com/books?id=O32VXB9e5P4C.

[20] William C. Swope, Hans C. Andersen, Peter H. Berens, and Kent R.
Wilson. A computer simulation method for the calculation of equilibrium
constants for the formation of physical clusters of molecules: Application
to small water clusters. The Journal of Chemical Physics, 76(1):637–
649, 1982. doi: 10.1063/1.442716. URL https://doi.org/10.1063/1.

442716.

[21] Glenn J. Martyna, Michael L. Klein, and Mark Tuckerman. Nosé-Hoover
chains: The canonical ensemble via continuous dynamics. The Journal of
Chemical Physics, 97(4):2635–2643, 1992. doi: 10.1063/1.463940. URL
https://doi.org/10.1063/1.463940.

[22] Mark E Tuckerman, José Alejandre, Roberto López-Rendón, Andrea L
Jochim, and Glenn J Martyna. A Liouville-operator derived measure-
preserving integrator for molecular dynamics simulations in the
isothermal-isobaric ensemble. Journal of Physics A: Mathematical and
General, 39(19):5629–5651, 2006. doi: 10.1088/0305-4470/39/19/s18.
URL https://doi.org/10.1088/0305-4470/39/19/s18.

[23] Glenn J. Martyna, Douglas J. Tobias, and Michael L. Klein. Constant
pressure molecular dynamics algorithms. The Journal of Chemical
Physics, 101(5):4177–4189, 1994. doi: 10.1063/1.467468. URL https:

//doi.org/10.1063/1.467468.

[24] Alexander Stukowski. Visualization and analysis of atomistic simulation
data with OVITO-the Open Visualization Tool. Modelling and
Simulation in Materials Science and Engineering, 18(1), Jan 2010. ISSN
0965-0393. doi: 10.1088/0965-0393/18/1/015012.

[25] Tom Mitchell. Machine learning. 1997.

[26] Samad Hajinazar, Junping Shao, and Aleksey N. Kolmogorov.
Stratified construction of neural network based interatomic models for
multicomponent materials. Physical Review B, 95(1):014114, 2017.
doi: 10.1103/physrevb.95.014114. URL https://doi.org/10.1103/

physrevb.95.014114.

[27] Kurt Hornik. Approximation capabilities of multilayer
feedforward networks. Neural Networks, 4(2):251–257, 1991. doi:

130

https://doi.org/10.1063/1.1378321
https://doi.org/10.1063/1.1378321
https://books.google.com/books?id=O32VXB9e5P4C
https://books.google.com/books?id=O32VXB9e5P4C
https://doi.org/10.1063/1.442716
https://doi.org/10.1063/1.442716
https://doi.org/10.1063/1.463940
https://doi.org/10.1088/0305-4470/39/19/s18
https://doi.org/10.1063/1.467468
https://doi.org/10.1063/1.467468
https://doi.org/10.1103/physrevb.95.014114
https://doi.org/10.1103/physrevb.95.014114

10.1016/0893-6080(91)90009-t. URL https://doi.org/10.1016/

0893-6080(91)90009-t.

[28] Christopher Woodward, Mark Asta, Dallas R. Trinkle, James Lill, and
Stefano Angioletti-Uberti. Ab initio simulations of molten Ni alloys.
Journal of Applied Physics, 107(11):113522, 2010. doi: 10.1063/1.
3437644. URL https://doi.org/10.1063/1.3437644.

[29] C. Woodward, M. Asta, D. R. Trinkle, J. Lill, and S. Angioletti-
Uberti. Ab-initio molecular dynamics simulations of molten Ni-based
superalloys. In 2008 DoD HPCMP Users Group Conference, pages 169–
174, July 2008. doi: 10.1109/DoD.HPCMP.UGC.2008.15.

[30] C. Woodward, D. Trinkle, and M. Asta. Ab initio molecular dynamics
simulations of molten Ni-based superalloys. In HPCMP Users Group
Conference (HPCMP-UGC), volume 00, pages 147–152, 06 2007. doi:
10.1109/HPCMP-UGC.2007.1. URL doi.ieeecomputersociety.org/

10.1109/HPCMP-UGC.2007.1.

[31] Christopher Woodward, James Lill, Mark Asta, and Dallas R
Trinkle. Molecular-dynamics simulations of molten Ni-based superalloys.
Superalloys 2012, pages 537–545, 2012. doi: 10.7449/2012/Superalloys
2012 537 545.

[32] D. Trinkle, M. Asta, and C. Woodward. Ab-initio molecular dynamics
simulations of molten Ni-based superalloys. In HPCMP Users Group
Conference (HPCMP-UGC), volume 00, pages 177–181, 06 2006. doi:
10.1109/HPCMP-UGC.2006.1. URL doi.ieeecomputersociety.org/

10.1109/HPCMP-UGC.2006.1.

[33] Jörg Behler. First principles neural network potentials for reactive
simulations of large molecular and condensed systems. Angewandte
Chemie International Edition, 56(42):12828–12840, 2017. doi: 10.1002/
anie.201703114. URL https://doi.org/10.1002/anie.201703114.

[34] J. S. Smith, O. Isayev, and A. E. Roitberg. ANI-1: an extensible neural
network potential with DFT accuracy at force field computational cost.
Chemical Science, 8(4):3192–3203, 2017. doi: 10.1039/c6sc05720a. URL
https://doi.org/10.1039/c6sc05720a.

[35] Jacob R. Boes and John R. Kitchin. Neural network predictions of
oxygen interactions on a dynamic Pd surface. Molecular Simulation, 43
(5-6):346–354, 2017. doi: 10.1080/08927022.2016.1274984. URL https:

//doi.org/10.1080/08927022.2016.1274984.

[36] Khosrow Shakouri, Jörg Behler, Jörg Meyer, and Geert-Jan Kroes.
Accurate neural network description of surface phonons in reactive gas-
surface dynamics: N2 + Ru(0001). The Journal of Physical Chemistry

131

https://doi.org/10.1016/0893-6080(91)90009-t
https://doi.org/10.1016/0893-6080(91)90009-t
https://doi.org/10.1063/1.3437644
doi.ieeecomputersociety.org/10.1109/HPCMP-UGC.2007.1
doi.ieeecomputersociety.org/10.1109/HPCMP-UGC.2007.1
doi.ieeecomputersociety.org/10.1109/HPCMP-UGC.2006.1
doi.ieeecomputersociety.org/10.1109/HPCMP-UGC.2006.1
https://doi.org/10.1002/anie.201703114
https://doi.org/10.1039/c6sc05720a
https://doi.org/10.1080/08927022.2016.1274984
https://doi.org/10.1080/08927022.2016.1274984

Letters, 8(10):2131–2136, 2017. doi: 10.1021/acs.jpclett.7b00784. URL
https://doi.org/10.1021/acs.jpclett.7b00784.

[37] Ryo Kobayashi, Daniele Giofré, Till Junge, Michele Ceriotti,
and William A. Curtin. Neural network potential for Al-Mg-Si
alloys. Physical Review Materials, 1(5):053604, 2017. doi: 10.
1103/physrevmaterials.1.053604. URL https://doi.org/10.1103/

physrevmaterials.1.053604.

[38] Volker L. Deringer, Noam Bernstein, Albert P. Bartók, Matthew J.
Cliffe, Rachel N. Kerber, Lauren E. Marbella, Clare P. Grey, Stephen R.
Elliott, and Gábor Csányi. Realistic atomistic structure of amorphous
silicon from machine-learning-driven molecular dynamics. The Journal
of Physical Chemistry Letters, 9(11):2879–2885, 2018. doi: 10.1021/
acs.jpclett.8b00902. URL https://doi.org/10.1021/acs.jpclett.

8b00902.

[39] Jörg Behler and Michele Parrinello. Generalized neural-network
representation of high-dimensional potential-energy surfaces. Physical
Review Letters, 98(14):146401, 2007. doi: 10.1103/physrevlett.98.
146401. URL https://doi.org/10.1103/physrevlett.98.146401.

[40] Albert P. Bartók, Mike C. Payne, Risi Kondor, and Gábor
Csányi. Gaussian approximation potentials: The accuracy of quantum
mechanics, without the electrons. Physical Review Letters, 104(13):
136403, 2010. doi: 10.1103/physrevlett.104.136403. URL https:

//doi.org/10.1103/physrevlett.104.136403.

[41] Atsuto Seko, Akira Takahashi, and Isao Tanaka. Sparse representation
for a potential energy surface. Physical Review B, 90(2):024101, 2014.
doi: 10.1103/physrevb.90.024101. URL https://doi.org/10.1103/

physrevb.90.024101.

[42] Venkatesh Botu and Rampi Ramprasad. Adaptive machine learning
framework to accelerate ab initio molecular dynamics. International
Journal of Quantum Chemistry, 115(16):1074–1083, 2014. doi: 10.1002/
qua.24836. URL https://doi.org/10.1002/qua.24836.

[43] Mardochee Reveil and Paulette Clancy. Classification of spatially
resolved molecular fingerprints for machine learning applications and
development of a codebase for their implementation. Molecular Systems
Design & Engineering, 3:431–441, 2018. doi: 10.1039/c8me00003d. URL
https://doi.org/10.1039/c8me00003d.

[44] Jörg Behler. Constructing high-dimensional neural network potentials:
A tutorial review. International Journal of Quantum Chemistry, 115
(16):1032–1050, 2015. doi: 10.1002/qua.24890. URL https://doi.org/

10.1002/qua.24890.

132

https://doi.org/10.1021/acs.jpclett.7b00784
https://doi.org/10.1103/physrevmaterials.1.053604
https://doi.org/10.1103/physrevmaterials.1.053604
https://doi.org/10.1021/acs.jpclett.8b00902
https://doi.org/10.1021/acs.jpclett.8b00902
https://doi.org/10.1103/physrevlett.98.146401
https://doi.org/10.1103/physrevlett.104.136403
https://doi.org/10.1103/physrevlett.104.136403
https://doi.org/10.1103/physrevb.90.024101
https://doi.org/10.1103/physrevb.90.024101
https://doi.org/10.1002/qua.24836
https://doi.org/10.1039/c8me00003d
https://doi.org/10.1002/qua.24890
https://doi.org/10.1002/qua.24890

[45] Tran Doan Huan, Rohit Batra, James Chapman, Sridevi
Krishnan, Lihua Chen, and Rampi Ramprasad. A universal
strategy for the creation of machine learning-based atomistic
force fields. npj Computational Materials, 3(1):37, 2017. doi:
10.1038/s41524-017-0042-y. URL https://doi.org/10.1038/

s41524-017-0042-y.

[46] Volker L. Deringer and Gábor Csányi. Machine learning based
interatomic potential for amorphous carbon. Physical Review B, 95
(9):094203, 2017. doi: 10.1103/physrevb.95.094203. URL https:

//doi.org/10.1103/physrevb.95.094203.

[47] Albert P. Bartók, James Kermode, Noam Bernstein, and Gábor Csányi.
Machine learning a general-purpose interatomic potential for silicon.
Physical Review X, 8(4):041048, 2018. doi: 10.1103/physrevx.8.041048.
URL https://doi.org/10.1103/physrevx.8.041048.

[48] Volker L. Deringer, Chris J. Pickard, and Gábor Csányi. Data-driven
learning of total and local energies in elemental boron. Physical Review
Letters, 120(15):156001, 2018. doi: 10.1103/physrevlett.120.156001.
URL https://doi.org/10.1103/physrevlett.120.156001.

[49] Justin S. Smith, Ben Nebgen, Nicholas Lubbers, Olexandr Isayev, and
Adrian E. Roitberg. Less is more: Sampling chemical space with active
learning. The Journal of Chemical Physics, 148(24):241733, 2018. doi:
10.1063/1.5023802. URL https://doi.org/10.1063/1.5023802.

[50] Li Zhu, Maximilian Amsler, Tobias Fuhrer, Bastian Schaefer, Somayeh
Faraji, Samare Rostami, S. Alireza Ghasemi, Ali Sadeghi, Migle
Grauzinyte, Chris Wolverton, and Stefan Goedecker. A fingerprint based
metric for measuring similarities of crystalline structures. The Journal
of Chemical Physics, 144(3):034203, 2016. doi: 10.1063/1.4940026. URL
https://doi.org/10.1063/1.4940026.

[51] Sandip De, Albert P. Bartók, Gábor Csányi, and Michele Ceriotti.
Comparing molecules and solids across structural and alchemical space.
Physical Chemistry Chemical Physics, 18(20):13754–13769, 2016. doi:
10.1039/c6cp00415f. URL https://doi.org/10.1039/c6cp00415f.

[52] Albert P. Bartók, Risi Kondor, and Gábor Csányi. On representing
chemical environments. Physical Review B, 87(18):184115, 2013. doi: 10.
1103/physrevb.87.184115. URL https://doi.org/10.1103/physrevb.

87.184115.

[53] Piero Gasparotto, Robert Horst Meißner, and Michele Ceriotti.
Recognizing local and global structural motifs at the atomic scale.
Journal of Chemical Theory and Computation, 14(2):486–498, 2018. doi:

133

https://doi.org/10.1038/s41524-017-0042-y
https://doi.org/10.1038/s41524-017-0042-y
https://doi.org/10.1103/physrevb.95.094203
https://doi.org/10.1103/physrevb.95.094203
https://doi.org/10.1103/physrevx.8.041048
https://doi.org/10.1103/physrevlett.120.156001
https://doi.org/10.1063/1.5023802
https://doi.org/10.1063/1.4940026
https://doi.org/10.1039/c6cp00415f
https://doi.org/10.1103/physrevb.87.184115
https://doi.org/10.1103/physrevb.87.184115

10.1021/acs.jctc.7b00993. URL https://doi.org/10.1021/acs.jctc.

7b00993.

[54] Laurens van der Maaten and Geoffrey Hinton. Visualizing data using
t-SNE. Journal of machine learning research, 9(Nov):2579–2605, 2008.
URL http://www.jmlr.org/papers/v9/vandermaaten08a.html.

[55] Ekin D. Cubuk, Brad D. Malone, Berk Onat, Amos Waterland, and
Efthimios Kaxiras. Representations in neural network based empirical
potentials. The Journal of Chemical Physics, 147(2):024104, 2017. doi:
10.1063/1.4990503. URL https://doi.org/10.1063/1.4990503.

[56] Michele Ceriotti, Gareth A. Tribello, and Michele Parrinello. Simplifying
the representation of complex free-energy landscapes using sketch-map.
Proceedings of the National Academy of Sciences, 108(32):13023–13028,
2011. doi: 10.1073/pnas.1108486108. URL https://doi.org/10.1073/

pnas.1108486108.

[57] Michele Ceriotti, Gareth A. Tribello, and Michele Parrinello.
Demonstrating the transferability and the descriptive power of sketch-
map. Journal of Chemical Theory and Computation, 9(3):1521–1532,
2013. doi: 10.1021/ct3010563. URL https://doi.org/10.1021/

ct3010563.

[58] Sönke Lorenz, Matthias Scheffler, and Axel Gross. Descriptions of
surface chemical reactions using a neural network representation of
the potential-energy surface. Physical Review B, 73(11):115431, 2006.
doi: 10.1103/physrevb.73.115431. URL https://doi.org/10.1103/

physrevb.73.115431.

[59] Félix Musil, Sandip De, Jack Yang, Joshua E. Campbell, Graeme M.
Day, and Michele Ceriotti. Machine learning for the structure-energy-
property landscapes of molecular crystals. Chemical Science, 9(5):1289–
1300, 2018. doi: 10.1039/c7sc04665k. URL https://doi.org/10.1039/

c7sc04665k.

[60] G. Kresse and J. Furthmüller. Efficient iterative schemes for ab initio
total-energy calculations using a plane-wave basis set. Physical Review
B, 54(16):11169–11186, 1996. doi: 10.1103/physrevb.54.11169. URL
https://doi.org/10.1103/physrevb.54.11169.

[61] Lisha Li, Kevin Jamieson, Giulia DeSalvo, Afshin Rostamizadeh, and
Ameet Talwalkar. Hyperband: A novel bandit-based approach to
hyperparameter optimization. CoRR, 2016. URL http://arxiv.org/

abs/1603.06560v4.

134

https://doi.org/10.1021/acs.jctc.7b00993
https://doi.org/10.1021/acs.jctc.7b00993
http://www.jmlr.org/papers/v9/vandermaaten08a.html
https://doi.org/10.1063/1.4990503
https://doi.org/10.1073/pnas.1108486108
https://doi.org/10.1073/pnas.1108486108
https://doi.org/10.1021/ct3010563
https://doi.org/10.1021/ct3010563
https://doi.org/10.1103/physrevb.73.115431
https://doi.org/10.1103/physrevb.73.115431
https://doi.org/10.1039/c7sc04665k
https://doi.org/10.1039/c7sc04665k
https://doi.org/10.1103/physrevb.54.11169
http://arxiv.org/abs/1603.06560v4
http://arxiv.org/abs/1603.06560v4

[62] A. Pasturel and N. Jakse. Short-range structural signature of transport
properties of Al-Ni melts. Journal of Non-Crystalline Solids, 425:176–
182, 2015. doi: 10.1016/j.jnoncrysol.2015.06.014. URL https://doi.

org/10.1016/j.jnoncrysol.2015.06.014.

[63] James R. Morris, U. Dahlborg, and M. Calvo-Dahlborg. Recent
developments and outstanding challenges in theory and modeling of
liquid metals. Journal of Non-Crystalline Solids, 353(32-40):3444–3453,
2007. doi: 10.1016/j.jnoncrysol.2007.05.159. URL https://doi.org/

10.1016/j.jnoncrysol.2007.05.159.

[64] Kenneth R. Harris. The fractional Stokes-Einstein equation: Application
to Lennard-Jones, molecular, and ionic liquids. The Journal of Chemical
Physics, 131(5):054503, 2009. doi: 10.1063/1.3183951. URL https:

//doi.org/10.1063/1.3183951.

[65] Vikas Dubey, Shakkira Erimban, Sandipa Indra, and Snehasis
Daschakraborty. Understanding the origin of the breakdown of the
Stokes-Einstein relation in supercooled water at different temperature-
pressure conditions. The Journal of Physical Chemistry B, 123(47):
10089–10099, 2019. doi: 10.1021/acs.jpcb.9b08309. URL https://doi.

org/10.1021/acs.jpcb.9b08309.

[66] Noel Jakse and Alain Pasturel. Liquid aluminum: Atomic diffusion and
viscosity from ab initio molecular dynamics. Scientific Reports, 3(1):
3135, 2013. doi: 10.1038/srep03135. URL https://doi.org/10.1038/

srep03135.

[67] M. Trybula, N. Jakse, W. Gasior, and A. Pasturel. Structural and
physicochemical properties of liquid Al-Zn alloys: A combined study
based on molecular dynamics simulations and the quasi-lattice theory.
The Journal of Chemical Physics, 141(22):224504, 2014. doi: 10.1063/
1.4903209. URL https://doi.org/10.1063/1.4903209.

[68] Markus M. Hoffmann, Matthew D. Too, Michael Vogel, Torsten
Gutmann, and Gerd Buntkowsky. Breakdown of the Stokes-Einstein
equation for solutions of water in oil reverse micelles. The Journal of
Physical Chemistry B, 124(41):9115–9125, 2020. doi: 10.1021/acs.jpcb.
0c06124. URL https://doi.org/10.1021/acs.jpcb.0c06124.

[69] A Pasturel and N Jakse. On the role of entropy in determining transport
properties in metallic melts. Journal of Physics: Condensed Matter, 27
(32):325104, 2015. doi: 10.1088/0953-8984/27/32/325104. URL https:

//doi.org/10.1088/0953-8984/27/32/325104.

[70] Lorenzo Costigliola, David M. Heyes, Thomas B. Schrøder, and Jeppe C.
Dyre. Revisiting the Stokes-Einstein relation without a hydrodynamic

135

https://doi.org/10.1016/j.jnoncrysol.2015.06.014
https://doi.org/10.1016/j.jnoncrysol.2015.06.014
https://doi.org/10.1016/j.jnoncrysol.2007.05.159
https://doi.org/10.1016/j.jnoncrysol.2007.05.159
https://doi.org/10.1063/1.3183951
https://doi.org/10.1063/1.3183951
https://doi.org/10.1021/acs.jpcb.9b08309
https://doi.org/10.1021/acs.jpcb.9b08309
https://doi.org/10.1038/srep03135
https://doi.org/10.1038/srep03135
https://doi.org/10.1063/1.4903209
https://doi.org/10.1021/acs.jpcb.0c06124
https://doi.org/10.1088/0953-8984/27/32/325104
https://doi.org/10.1088/0953-8984/27/32/325104

diameter. The Journal of Chemical Physics, 150(2):021101, 2019. doi:
10.1063/1.5080662. URL https://doi.org/10.1063/1.5080662.

[71] C.H. Li, Y.W. Luan, X.J. Han, and J.G. Li. Structural aspects of the
Stokes-Einstein relation breakdown in high temperature melts. Journal
of Non-Crystalline Solids, 458:107–117, 2017. doi: 10.1016/j.jnoncrysol.
2016.12.025. URL https://doi.org/10.1016/j.jnoncrysol.2016.

12.025.

[72] Y.H. Zhou, X.J. Han, and J.G. Li. Transport properties and abnormal
breakdown of the Stokes-Einstein relation in computer simulated
Al72Ni16Co12 metallic melt. Journal of Non-Crystalline Solids, 517:83–
95, 2019. doi: 10.1016/j.jnoncrysol.2019.04.035. URL https://doi.

org/10.1016/j.jnoncrysol.2019.04.035.

[73] Y. C. Hu, F. X. Li, M. Z. Li, H. Y. Bai, and W. H. Wang. Structural
signatures evidenced in dynamic crossover phenomena in metallic glass-
forming liquids. Journal of Applied Physics, 119(20):205108, 2016. doi:
10.1063/1.4952986. URL https://doi.org/10.1063/1.4952986.

[74] N. Jakse and A. Pasturel. Transport properties and Stokes-Einstein
relation in Al-rich liquid alloys. The Journal of Chemical Physics, 144
(24):244502, 2016. doi: 10.1063/1.4954322. URL https://doi.org/10.

1063/1.4954322.

[75] Christina Cruickshank Miller. The Stokes-Einstein law for diffusion
in solution. Proceedings of the Royal Society of London. Series A,
Containing Papers of a Mathematical and Physical Character, 106(740):
724–749, 1924. doi: 10.1098/rspa.1924.0100. URL https://doi.org/

10.1098/rspa.1924.0100.

[76] Chen-Hui Li, Xiu-Jun Han, Ying-Wei Luan, and Jian-Guo Li. Abnormal
breakdown of Stokes-Einstein relation in liquid aluminium. Chinese
Physics B, 26(1):016102, 2017. doi: 10.1088/1674-1056/26/1/016102.
URL https://doi.org/10.1088/1674-1056/26/1/016102.

[77] Frans Spaepen. Five-fold symmetry in liquids. Nature, 408(6814):781–
782, 2000. doi: 10.1038/35048652. URL https://doi.org/10.1038/

35048652.

[78] Y. C. Hu, F. X. Li, M. Z. Li, H. Y. Bai, and W. H. Wang. Five-
fold symmetry as indicator of dynamic arrest in metallic glass-forming
liquids. Nature Communications, 6(1):8310, 2015. doi: 10.1038/
ncomms9310. URL https://doi.org/10.1038/ncomms9310.

[79] Songyou Wang, C. Z. Wang, Feng-Chuan Chuang, James R. Morris, and
K. M. Ho. Ab initio molecular dynamics simulation of liquid Al88Si12

136

https://doi.org/10.1063/1.5080662
https://doi.org/10.1016/j.jnoncrysol.2016.12.025
https://doi.org/10.1016/j.jnoncrysol.2016.12.025
https://doi.org/10.1016/j.jnoncrysol.2019.04.035
https://doi.org/10.1016/j.jnoncrysol.2019.04.035
https://doi.org/10.1063/1.4952986
https://doi.org/10.1063/1.4954322
https://doi.org/10.1063/1.4954322
https://doi.org/10.1098/rspa.1924.0100
https://doi.org/10.1098/rspa.1924.0100
https://doi.org/10.1088/1674-1056/26/1/016102
https://doi.org/10.1038/35048652
https://doi.org/10.1038/35048652
https://doi.org/10.1038/ncomms9310

alloys. The Journal of Chemical Physics, 122(3):034508, 2005. doi:
10.1063/1.1833355. URL https://doi.org/10.1063/1.1833355.

[80] K. H. Khoo, T.-L. Chan, M. Kim, and James R. Chelikowsky. Ab
initio molecular dynamics simulations of molten Al1-xSix alloys. Physical
Review B, 84(21):214203, 2011. doi: 10.1103/physrevb.84.214203. URL
https://doi.org/10.1103/physrevb.84.214203.

[81] Jingyu Qin, Shaopeng Pan, Yuanhua Qi, and Tingkun Gu. The
structure and thermodynamic properties of liquid Al-Si alloys by ab
initio molecular dynamics simulation. Journal of Non-Crystalline Solids,
433:31–37, 2016. doi: 10.1016/j.jnoncrysol.2015.11.032. URL https:

//doi.org/10.1016/j.jnoncrysol.2015.11.032.

[82] Jingyu Qin, Xinxin Li, Jin Wang, and Shaopeng Pan. The self-diffusion
coefficients of liquid binary M-Si (M=Al, Fe, Mg and Au) alloy systems
by first principles molecular dynamics simulation. AIP Advances, 9(3):
035328, 2019. doi: 10.1063/1.5067295. URL https://doi.org/10.

1063/1.5067295.

[83] Venkateswara Rao Manga and D R Poirier. Ab initio molecular
dynamics simulation of self-diffusion in Al-Si binary melts. Modelling
and Simulation in Materials Science and Engineering, 26(6):065006,
2018. doi: 10.1088/1361-651x/aacdbc. URL https://doi.org/10.

1088/1361-651x/aacdbc.

[84] M Ji and X G Gong. Ab initio molecular dynamics simulation on
temperature-dependent properties of Al-Si liquid alloy. Journal of
Physics: Condensed Matter, 16(15):2507–2514, 2004. doi: 10.1088/
0953-8984/16/15/004. URL https://doi.org/10.1088/0953-8984/

16/15/004.

[85] Xiusong Huang, Xixi Dong, Lehua Liu, and Peijie Li. Liquid structure
of Al-Si alloy: A molecular dynamics simulation. Journal of Non-
Crystalline Solids, 503-504:182–185, 2019. doi: 10.1016/j.jnoncrysol.
2018.09.047. URL https://doi.org/10.1016/j.jnoncrysol.2018.

09.047.

[86] P. Saidi and J.J. Hoyt. Atomistic simulation of the step mobility
at the Al-Si(1 1 1) crystal-melt interface using molecular dynamics.
Computational Materials Science, 111:137–147, 2016. doi: 10.
1016/j.commatsci.2015.09.040. URL https://doi.org/10.1016/j.

commatsci.2015.09.040.

[87] P. Ganesh and M. Widom. Signature of nearly icosahedral structures in
liquid and supercooled liquid copper. Physical Review B, 74(13):134205,
2006. doi: 10.1103/physrevb.74.134205. URL https://doi.org/10.

1103/physrevb.74.134205.

137

https://doi.org/10.1063/1.1833355
https://doi.org/10.1103/physrevb.84.214203
https://doi.org/10.1016/j.jnoncrysol.2015.11.032
https://doi.org/10.1016/j.jnoncrysol.2015.11.032
https://doi.org/10.1063/1.5067295
https://doi.org/10.1063/1.5067295
https://doi.org/10.1088/1361-651x/aacdbc
https://doi.org/10.1088/1361-651x/aacdbc
https://doi.org/10.1088/0953-8984/16/15/004
https://doi.org/10.1088/0953-8984/16/15/004
https://doi.org/10.1016/j.jnoncrysol.2018.09.047
https://doi.org/10.1016/j.jnoncrysol.2018.09.047
https://doi.org/10.1016/j.commatsci.2015.09.040
https://doi.org/10.1016/j.commatsci.2015.09.040
https://doi.org/10.1103/physrevb.74.134205
https://doi.org/10.1103/physrevb.74.134205

[88] P. Ganesh and M. Widom. Ab initio simulations of geometrical
frustration in supercooled liquid Fe and Fe-based metallic glass. Physical
Review B, 77(1):014205, 2008. doi: 10.1103/physrevb.77.014205. URL
https://doi.org/10.1103/physrevb.77.014205.

[89] Steve Plimpton. Fast parallel algorithms for short-range molecular
dynamics. Journal of Computational Physics, 117(1):1–19, 1995. doi:
10.1006/jcph.1995.1039. URL https://doi.org/10.1006/jcph.1995.

1039.

[90] Nicholas A. Nystrom, Michael J. Levine, Ralph Z. Roskies, and J. Ray
Scott. Bridges. In Proceedings of the 2015 XSEDE Conference on
Scientific Advancements Enabled by Enhanced Cyberinfrastructure -
XSEDE ’15, 2015. doi: 10.1145/2792745.2792775. URL http://dx.

doi.org/10.1145/2792745.2792775.

[91] John Towns, Timothy Cockerill, Maytal Dahan, Ian Foster, Kelly
Gaither, Andrew Grimshaw, Victor Hazlewood, Scott Lathrop, Dave
Lifka, Gregory D. Peterson, Ralph Roskies, J. Ray Scott, and Nancy
Wilkins-Diehr. XSEDE: Accelerating scientific discovery. Computing in
Science & Engineering, 16(5):62–74, 2014. doi: 10.1109/mcse.2014.80.
URL http://dx.doi.org/10.1109/MCSE.2014.80.

[92] Ni Zhan and John R. Kitchin. Data and code: Origin of the Stokes-
Einstein deviation in liquid Al-Si https://doi.org/10.5281/zenodo.
5554968, 2021.

[93] Edward J. Maginn, Richard A. Messerly, Daniel J. Carlson, Daniel R.
Roe, and J. Richard Elliott. Best practices for computing transport
properties 1. Self-diffusivity and viscosity from equilibrium molecular
dynamics [article v1.0]. Living Journal of Computational Molecular
Science, 1(1), 2019. doi: 10.33011/livecoms.1.1.6324. URL https:

//doi.org/10.33011/livecoms.1.1.6324.

[94] In-Chul Yeh and Gerhard Hummer. System-size dependence of diffusion
coefficients and viscosities from molecular dynamics simulations with
periodic boundary conditions. The Journal of Physical Chemistry B,
108(40):15873–15879, 2004. doi: 10.1021/jp0477147. URL https://

doi.org/10.1021/jp0477147.

[95] E M Kirova and G E Norman. Viscosity calculations at molecular
dynamics simulations. Journal of Physics: Conference Series, 653:
012106, 2015. doi: 10.1088/1742-6596/653/1/012106. URL https:

//doi.org/10.1088/1742-6596/653/1/012106.

[96] Guang-Jun Guo, Yi-Gang Zhang, Keith Refson, and Ya-Juan Zhao.
Viscosity and stress autocorrelation function in supercooled water: A

138

https://doi.org/10.1103/physrevb.77.014205
https://doi.org/10.1006/jcph.1995.1039
https://doi.org/10.1006/jcph.1995.1039
http://dx.doi.org/10.1145/2792745.2792775
http://dx.doi.org/10.1145/2792745.2792775
http://dx.doi.org/10.1109/MCSE.2014.80
https://doi.org/10.5281/zenodo.5554968
https://doi.org/10.5281/zenodo.5554968
https://doi.org/10.33011/livecoms.1.1.6324
https://doi.org/10.33011/livecoms.1.1.6324
https://doi.org/10.1021/jp0477147
https://doi.org/10.1021/jp0477147
https://doi.org/10.1088/1742-6596/653/1/012106
https://doi.org/10.1088/1742-6596/653/1/012106

molecular dynamics study. Molecular Physics, 100(16):2617–2627, 2002.
doi: 10.1080/00268970210133477. URL https://doi.org/10.1080/

00268970210133477.

[97] Pauli Virtanen, Ralf Gommers, Travis E. Oliphant, Matt Haberland,
Tyler Reddy, David Cournapeau, Evgeni Burovski, Pearu Peterson,
Warren Weckesser, Jonathan Bright, Stéfan J. van der Walt, Matthew
Brett, Joshua Wilson, K. Jarrod Millman, Nikolay Mayorov, Andrew
R. J. Nelson, Eric Jones, Robert Kern, Eric Larson, C J Carey, İlhan
Polat, Yu Feng, Eric W. Moore, Jake VanderPlas, Denis Laxalde, Josef
Perktold, Robert Cimrman, Ian Henriksen, E. A. Quintero, Charles R.
Harris, Anne M. Archibald, Antônio H. Ribeiro, Fabian Pedregosa, Paul
van Mulbregt, and SciPy 1.0 Contributors. SciPy 1.0: Fundamental
Algorithms for Scientific Computing in Python. Nature Methods, 17:
261–272, 2020. doi: 10.1038/s41592-019-0686-2.

[98] Charles R. Harris, K. Jarrod Millman, Stéfan J. van der Walt,
Ralf Gommers, Pauli Virtanen, David Cournapeau, Eric Wieser,
Julian Taylor, Sebastian Berg, Nathaniel J. Smith, Robert Kern,
Matti Picus, Stephan Hoyer, Marten H. van Kerkwijk, Matthew
Brett, Allan Haldane, Jaime Fernández del Ŕıo, Mark Wiebe, Pearu
Peterson, Pierre Gérard-Marchant, Kevin Sheppard, Tyler Reddy,
Warren Weckesser, Hameer Abbasi, Christoph Gohlke, and Travis E.
Oliphant. Array programming with NumPy. Nature, 585(7825):357–
362, 2020. doi: 10.1038/s41586-020-2649-2. URL https://doi.org/

10.1038/s41586-020-2649-2.

[99] Lili Ju, Todd Ringler, and Max Gunzburger. Voronoi Tessellations
and Their Application to Climate and Global Modeling, pages 313–
342. Numerical Techniques for Global Atmospheric Models. Springer
Berlin Heidelberg, 2011. doi: 10.1007/978-3-642-11640-7 10. URL
https://doi.org/10.1007/978-3-642-11640-7_10.

[100] F. Li, X.J. Liu, and Z.P. Lu. Atomic structural evolution during glass
formation of a Cu-Zr binary metallic glass. Computational Materials
Science, 85:147–153, 2014. doi: 10.1016/j.commatsci.2013.12.058. URL
https://doi.org/10.1016/j.commatsci.2013.12.058.

[101] S. Trady, A. Hasnaoui, and M. Mazroui. Atomic packing and medium-
range order in Ni3Al metallic glass. Journal of Non-Crystalline Solids,
468:27–33, 2017. doi: 10.1016/j.jnoncrysol.2017.04.026. URL https:

//doi.org/10.1016/j.jnoncrysol.2017.04.026.

[102] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg,
J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and
E. Duchesnay. Scikit-learn: Machine learning in Python. Journal of

139

https://doi.org/10.1080/00268970210133477
https://doi.org/10.1080/00268970210133477
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1007/978-3-642-11640-7_10
https://doi.org/10.1016/j.commatsci.2013.12.058
https://doi.org/10.1016/j.jnoncrysol.2017.04.026
https://doi.org/10.1016/j.jnoncrysol.2017.04.026

Machine Learning Research, 12:2825–2830, 2011. URL http://dl.acm.

org/citation.cfm?id=1953048.2078195.

[103] Diego Coglitore, Stuart P. Edwardson, Peter Macko, Eann A. Patterson,
and Maurice Whelan. Transition from fractional to classical Stokes-
Einstein behaviour in simple fluids. Royal Society Open Science, 4(12):
170507, 2017. doi: 10.1098/rsos.170507. URL https://doi.org/10.

1098/rsos.170507.

[104] Shaopeng Pan, Z. W. Wu, W. H. Wang, M. Z. Li, and Limei Xu.
Structural origin of fractional Stokes-Einstein relation in glass-forming
liquids. Scientific Reports, 7(1):39938, 2017. doi: 10.1038/srep39938.
URL https://doi.org/10.1038/srep39938.

[105] Aidan P. Thompson, Steven J. Plimpton, and William Mattson. General
formulation of pressure and stress tensor for arbitrary many-body
interaction potentials under periodic boundary conditions. The Journal
of Chemical Physics, 131(15):154107, 2009. doi: 10.1063/1.3245303.
URL https://doi.org/10.1063/1.3245303.

[106] M. J. Assael, E. K. Mihailidou, J. Brillo, S. V. Stankus, J. T. Wu, and
W. A. Wakeham. Reference correlation for the density and viscosity of
eutectic liquid alloys Al+Si, Pb+Bi, and Pb+Sn. Journal of Physical and
Chemical Reference Data, 41(3):033103, 2012. doi: 10.1063/1.4750035.
URL https://doi.org/10.1063/1.4750035.

[107] X.J. Liu, Y. Xu, Z.P. Lu, X. Hui, G.L. Chen, G.P. Zheng, and C.T. Liu.
Atomic packing symmetry in the metallic liquid and glass states. Acta
Materialia, 59(16):6480–6488, 2011. doi: 10.1016/j.actamat.2011.07.012.
URL https://doi.org/10.1016/j.actamat.2011.07.012.

[108] S. P. Pan, J. Y. Qin, W. M. Wang, and T. K. Gu. Origin of splitting of
the second peak in the pair-distribution function for metallic glasses.
Physical Review B, 84(9):092201, 2011. doi: 10.1103/physrevb.84.
092201. URL https://doi.org/10.1103/physrevb.84.092201.

[109] Jun Ding, Evan Ma, Mark Asta, and Robert O. Ritchie. Second-
nearest-neighbor correlations from connection of atomic packing motifs
in metallic glasses and liquids. Scientific Reports, 5(1):17429, 2015. doi:
10.1038/srep17429. URL https://doi.org/10.1038/srep17429.

[110] M Hoffmann, A Marmodoro, A Ernst, W Hergert, J Dahl, J L̊ang,
P Laukkanen, M P J Punkkinen, and K Kokko. Quantitative description
of short-range order and its influence on the electronic structure in
Ag-Pd alloys. Journal of Physics: Condensed Matter, 28(30):305501,
2016. doi: 10.1088/0953-8984/28/30/305501. URL https://doi.org/

10.1088/0953-8984/28/30/305501.

140

http://dl.acm.org/citation.cfm?id=1953048.2078195
http://dl.acm.org/citation.cfm?id=1953048.2078195
https://doi.org/10.1098/rsos.170507
https://doi.org/10.1098/rsos.170507
https://doi.org/10.1038/srep39938
https://doi.org/10.1063/1.3245303
https://doi.org/10.1063/1.4750035
https://doi.org/10.1016/j.actamat.2011.07.012
https://doi.org/10.1103/physrevb.84.092201
https://doi.org/10.1038/srep17429
https://doi.org/10.1088/0953-8984/28/30/305501
https://doi.org/10.1088/0953-8984/28/30/305501

[111] A. Fernandez-Caballero, J. S. Wrobel, P. M. Mummery, and D. Nguyen-
Manh. Short-range order in high entropy alloys: Theoretical formulation
and application to Mo-Nb-Ta-V-W system. CoRR, 2017. URL http:

//arxiv.org/abs/1705.01844v1.

[112] G. Q. Yue, Y. Zhang, Y. Sun, B. Shen, F. Dong, Z. Y. Wang, R. J.
Zhang, Y. X. Zheng, M. J. Kramer, S. Y. Wang, C. Z. Wang, K. M. Ho,
and L. Y. Chen. Local structure order in Pd78Cu6Si16 liquid. Scientific
Reports, 5(1):8277, 2015. doi: 10.1038/srep08277. URL https://doi.

org/10.1038/srep08277.

[113] Abraham. Savitzky and M. J. E. Golay. Smoothing and differentiation
of data by simplified least squares procedures. Analytical Chemistry, 36
(8):1627–1639, 1964. doi: 10.1021/ac60214a047. URL https://doi.

org/10.1021/ac60214a047.

[114] Yaniv Ovadia, Emily Fertig, Jie Ren, Zachary Nado, D Sculley, Sebastian
Nowozin, Joshua V. Dillon, Balaji Lakshminarayanan, and Jasper
Snoek. Can you trust your model’s uncertainty? Evaluating predictive
uncertainty under dataset shift. CoRR, 2019. URL http://arxiv.org/

abs/1906.02530v2.

[115] Benjamin Kompa, Jasper Snoek, and Andrew L. Beam. Second opinion
needed: Communicating uncertainty in medical machine learning. npj
Digital Medicine, 4(1):4, 2021. doi: 10.1038/s41746-020-00367-3. URL
https://doi.org/10.1038/s41746-020-00367-3.

[116] Larry Wasserman. All of Statistics. Springer Texts in Statistics. Springer
New York, 2004. doi: 10.1007/978-0-387-21736-9. URL https://doi.

org/10.1007/978-0-387-21736-9.

[117] Wesley Maddox, Timur Garipov, Pavel Izmailov, Dmitry Vetrov, and
Andrew Gordon Wilson. A simple baseline for Bayesian uncertainty
in deep learning. CoRR, 2019. URL http://arxiv.org/abs/1902.

02476v2.

[118] Pavel Izmailov, Wesley J. Maddox, Polina Kirichenko, Timur Garipov,
Dmitry Vetrov, and Andrew Gordon Wilson. Subspace inference for
Bayesian deep learning. In Ryan P. Adams and Vibhav Gogate,
editors, Proceedings of The 35th Uncertainty in Artificial Intelligence
Conference, volume 115 of Proceedings of Machine Learning Research,
pages 1169–1179, Tel Aviv, Israel, 22–25 Jul 2020. PMLR. URL
http://proceedings.mlr.press/v115/izmailov20a.html.

[119] Jeremiah Zhe Liu, Zi Lin, Shreyas Padhy, Dustin Tran, Tania Bedrax-
Weiss, and Balaji Lakshminarayanan. Simple and principled uncertainty
estimation with deterministic deep learning via distance awareness.
CoRR, 2020. URL http://arxiv.org/abs/2006.10108v2.

141

http://arxiv.org/abs/1705.01844v1
http://arxiv.org/abs/1705.01844v1
https://doi.org/10.1038/srep08277
https://doi.org/10.1038/srep08277
https://doi.org/10.1021/ac60214a047
https://doi.org/10.1021/ac60214a047
http://arxiv.org/abs/1906.02530v2
http://arxiv.org/abs/1906.02530v2
https://doi.org/10.1038/s41746-020-00367-3
https://doi.org/10.1007/978-0-387-21736-9
https://doi.org/10.1007/978-0-387-21736-9
http://arxiv.org/abs/1902.02476v2
http://arxiv.org/abs/1902.02476v2
http://proceedings.mlr.press/v115/izmailov20a.html
http://arxiv.org/abs/2006.10108v2

[120] Jing Lei, Max G’Sell, Alessandro Rinaldo, Ryan J. Tibshirani, and Larry
Wasserman. Distribution-free predictive inference for regression. CoRR,
2016. URL http://arxiv.org/abs/1604.04173v2.

[121] Yaniv Romano, Evan Patterson, and Emmanuel J. Candès.
Conformalized quantile regression. CoRR, 2019. URL http://arxiv.

org/abs/1905.03222v1.

[122] Tomohiro Endo, Tomoaki Watanabe, and Akio Yamamoto. Confidence
interval estimation by bootstrap method for uncertainty quantification
using random sampling method. Journal of Nuclear Science and
Technology, 52(7-8):993–999, 2015. doi: 10.1080/00223131.2015.
1034216. URL https://doi.org/10.1080/00223131.2015.1034216.

[123] Glenn Palmer, Siqi Du, Alexander Politowicz, Joshua Paul Emory, Xiyu
Yang, Anupraas Gautam, Grishma Gupta, Zhelong Li, Ryan Jacobs,
and Dane Morgan. Calibrated bootstrap for uncertainty quantification
in regression models. CoRR, 2021. URL http://arxiv.org/abs/2105.

13303v1.

[124] Hongfei Du, Emre Barut, and Fang Jin. Uncertainty quantification in
cnn through the bootstrap of convex neural networks. Proceedings of the
AAAI Conference on Artificial Intelligence, 35(13):12078–12085, May
2021. URL https://ojs.aaai.org/index.php/AAAI/article/view/

17434.

[125] Moloud Abdar, Farhad Pourpanah, Sadiq Hussain, Dana Rezazadegan,
Li Liu, Mohammad Ghavamzadeh, Paul Fieguth, Xiaochun Cao, Abbas
Khosravi, U. Rajendra Acharya, Vladimir Makarenkov, and Saeid
Nahavandi. A review of uncertainty quantification in deep learning:
Techniques, applications and challenges. Information Fusion, 2021.
doi: 10.1016/j.inffus.2021.05.008. URL https://doi.org/10.1016/j.

inffus.2021.05.008.

[126] Florian Wenzel, Jasper Snoek, Dustin Tran, and Rodolphe
Jenatton. Hyperparameter ensembles for robustness and uncertainty
quantification. CoRR, 2020. URL http://arxiv.org/abs/2006.

13570v3.

[127] Balaji Lakshminarayanan, Alexander Pritzel, and Charles Blundell.
Simple and scalable predictive uncertainty estimation using deep
ensembles. CoRR, 2016. URL http://arxiv.org/abs/1612.01474v3.

[128] James O. Berger and Leonard A. Smith. On the statistical
formalism of uncertainty quantification. Annual Review
of Statistics and Its Application, 6(1):433–460, 2019. doi:
10.1146/annurev-statistics-030718-105232. URL https://doi.

org/10.1146/annurev-statistics-030718-105232.

142

http://arxiv.org/abs/1604.04173v2
http://arxiv.org/abs/1905.03222v1
http://arxiv.org/abs/1905.03222v1
https://doi.org/10.1080/00223131.2015.1034216
http://arxiv.org/abs/2105.13303v1
http://arxiv.org/abs/2105.13303v1
https://ojs.aaai.org/index.php/AAAI/article/view/17434
https://ojs.aaai.org/index.php/AAAI/article/view/17434
https://doi.org/10.1016/j.inffus.2021.05.008
https://doi.org/10.1016/j.inffus.2021.05.008
http://arxiv.org/abs/2006.13570v3
http://arxiv.org/abs/2006.13570v3
http://arxiv.org/abs/1612.01474v3
https://doi.org/10.1146/annurev-statistics-030718-105232
https://doi.org/10.1146/annurev-statistics-030718-105232

[129] Robert Tibshirani. A comparison of some error estimates for neural
network models. Neural Computation, 8(1):152–163, 1996. doi: 10.
1162/neco.1996.8.1.152. URL https://doi.org/10.1162/neco.1996.

8.1.152.

[130] Richard Dybowski and Stephen J Roberts. Confidence intervals
and prediction intervals for feed-forward neural networks. Clinical
Applications of Artificial Neural Networks, pages 298–326, 2001.

[131] CE. Rasmussen and CKI. Williams. Gaussian Processes for Machine
Learning. MIT Press, 2006. URL www.GaussianProcess.org/gpml.

[132] Yarin Gal and Zoubin Ghahramani. Dropout as a Bayesian
approximation: Representing model uncertainty in deep learning. CoRR,
2015. URL http://arxiv.org/abs/1506.02142v6.

[133] David John Cameron Mackay. Bayesian methods for adaptive models.
PhD thesis, California Institute of Technology, 1992.

[134] Radford M. Neal. Priors for Infinite Networks, pages 29–53.
Bayesian Learning for Neural Networks. Springer New York, 1996.
doi: 10.1007/978-1-4612-0745-0 2. URL https://doi.org/10.1007/

978-1-4612-0745-0_2.

[135] Charles Blundell, Julien Cornebise, Koray Kavukcuoglu, and Daan
Wierstra. Weight uncertainty in neural networks. CoRR, 2015. URL
http://arxiv.org/abs/1505.05424v2.

[136] Hippolyt Ritter, Aleksandar Botev, and David Barber. A scalable
Laplace approximation for neural networks. In 6th International
Conference on Learning Representations, ICLR 2018-Conference Track
Proceedings, volume 6. International Conference on Representation
Learning, 2018.

[137] Huijie Tian, Christopher Rzepa, Ronak Upadhyay, and Srinivas
Rangarajan. Estimating vibrational and thermodynamic properties
of adsorbates with uncertainty using data driven surrogates. AIChE
Journal, 65(12), 2019. doi: 10.1002/aic.16838. URL https://doi.org/

10.1002/aic.16838.

[138] Janet R. Donaldson and Robert B. Schnabel. Computational experience
with confidence regions and confidence intervals for nonlinear least
squares. Technometrics, 29(1):67–82, 1987. doi: 10.1080/00401706.
1987.10488184. URL https://doi.org/10.1080/00401706.1987.

10488184.

[139] Richard D. de Veaux, Jennifer Schumi, Jason Schweinsberg, and Lyle H.
Ungar. Prediction intervals for neural networks via nonlinear regression.

143

https://doi.org/10.1162/neco.1996.8.1.152
https://doi.org/10.1162/neco.1996.8.1.152
www.GaussianProcess.org/gpml
http://arxiv.org/abs/1506.02142v6
https://doi.org/10.1007/978-1-4612-0745-0_2
https://doi.org/10.1007/978-1-4612-0745-0_2
http://arxiv.org/abs/1505.05424v2
https://doi.org/10.1002/aic.16838
https://doi.org/10.1002/aic.16838
https://doi.org/10.1080/00401706.1987.10488184
https://doi.org/10.1080/00401706.1987.10488184

Technometrics, 40(4):273, 1998. doi: 10.2307/1270528. URL https:

//doi.org/10.2307/1270528.

[140] G. Papadopoulos, P.J. Edwards, and A.F. Murray. Confidence
estimation methods for neural networks: A practical comparison. IEEE
Transactions on Neural Networks, 12(6):1278–1287, 2001. doi: 10.1109/
72.963764. URL https://doi.org/10.1109/72.963764.

[141] Burr Settles. Active learning literature survey. 2009.

[142] A. Khosravi, S. Nahavandi, D. Creighton, and A. F. Atiya.
Comprehensive review of neural network-based prediction intervals and
new advances. IEEE Transactions on Neural Networks, 22(9):1341–
1356, 2011. doi: 10.1109/tnn.2011.2162110. URL https://doi.org/

10.1109/tnn.2011.2162110.

[143] J Behler. Representing potential energy surfaces by high-dimensional
neural network potentials. Journal of Physics: Condensed Matter, 26
(18):183001, 2014. doi: 10.1088/0953-8984/26/18/183001. URL https:

//doi.org/10.1088/0953-8984/26/18/183001.

[144] Andrew A. Peterson, Rune Christensen, and Alireza Khorshidi.
Addressing uncertainty in atomistic machine learning. Physical
Chemistry Chemical Physics, 19(18):10978–10985, 2017. doi: 10.1039/
c7cp00375g. URL https://doi.org/10.1039/c7cp00375g.

[145] Justin S Smith, Benjamin T. Nebgen, Roman Zubatyuk, Nicholas
Lubbers, Christian Devereux, Kipton Barros, Sergei Tretiak, Olexandr
Isayev, and Adrian Roitberg. Approaching coupled cluster
accuracy with a general-purpose neural network potential through
transfer learning. 6 2019. doi: 10.26434/chemrxiv.6744440.
v2. URL https://chemrxiv.org/articles/Outsmarting_Quantum_

Chemistry_Through_Transfer_Learning/6744440.

[146] Zhenwei Li, James R. Kermode, and Alessandro De Vita. Molecular
dynamics with on-the-fly machine learning of quantum-mechanical
forces. Physical Review Letters, 114(9):096405, 2015. doi:
10.1103/physrevlett.114.096405. URL https://doi.org/10.1103/

physrevlett.114.096405.

[147] Nongnuch Artrith and Jörg Behler. High-dimensional neural network
potentials for metal surfaces: A prototype study for copper. Physical
Review B, 85(4):045439, 2012. doi: 10.1103/physrevb.85.045439. URL
https://doi.org/10.1103/physrevb.85.045439.

[148] Jonathan Vandermause, Steven B. Torrisi, Simon Batzner, Yu Xie,
Lixin Sun, Alexie M. Kolpak, and Boris Kozinsky. On-
the-fly active learning of interpretable Bayesian force fields for

144

https://doi.org/10.2307/1270528
https://doi.org/10.2307/1270528
https://doi.org/10.1109/72.963764
https://doi.org/10.1109/tnn.2011.2162110
https://doi.org/10.1109/tnn.2011.2162110
https://doi.org/10.1088/0953-8984/26/18/183001
https://doi.org/10.1088/0953-8984/26/18/183001
https://doi.org/10.1039/c7cp00375g
https://chemrxiv.org/articles/Outsmarting_Quantum_Chemistry_Through_Transfer_Learning/6744440
https://chemrxiv.org/articles/Outsmarting_Quantum_Chemistry_Through_Transfer_Learning/6744440
https://doi.org/10.1103/physrevlett.114.096405
https://doi.org/10.1103/physrevlett.114.096405
https://doi.org/10.1103/physrevb.85.045439

atomistic rare events. npj Computational Materials, 6(1):20, 2020.
doi: 10.1038/s41524-020-0283-z. URL https://doi.org/10.1038/

s41524-020-0283-z.

[149] Yu Xie, Jonathan Vandermause, Lixin Sun, Andrea Cepellotti, and
Boris Kozinsky. Bayesian force fields from active learning for simulation
of inter-dimensional transformation of stanene. npj Computational
Materials, 7(1):40, 2021. doi: 10.1038/s41524-021-00510-y. URL
https://doi.org/10.1038/s41524-021-00510-y.

[150] Rune Christensen. Error Mitigation in Computational Design of
Sustainable Energy Materials. PhD thesis, Department of Energy
Conversion and Storage, Technical University of Denmark, 2016.

[151] Mingjian Wen and Ellad B. Tadmor. Uncertainty quantification
in molecular simulations with dropout neural network
potentials. npj Computational Materials, 6(1):124, 2020. doi:
10.1038/s41524-020-00390-8. URL https://doi.org/10.1038/

s41524-020-00390-8.

[152] Jon Paul Janet, Chenru Duan, Tzuhsiung Yang, Aditya Nandy, and
Heather Kulik. A quantitative uncertainty metric controls error in neural
network-driven chemical discovery. Chemical Science, 2019. doi: 10.
1039/c9sc02298h. URL https://doi.org/10.1039/c9sc02298h.

[153] Kevin Tran, Willie Neiswanger, Junwoong Yoon, Qingyang Zhang,
Eric Xing, and Zachary W Ulissi. Methods for comparing uncertainty
quantifications for material property predictions. Machine Learning:
Science and Technology, 2020. doi: 10.1088/2632-2153/ab7e1a. URL
https://doi.org/10.1088/2632-2153/ab7e1a.

[154] Félix Musil, Michael J. Willatt, Mikhail A. Langovoy, and Michele
Ceriotti. Fast and accurate uncertainty estimation in chemical machine
learning. Journal of Chemical Theory and Computation, pages 906–915,
2019. doi: 10.1021/acs.jctc.8b00959. URL https://doi.org/10.1021/

acs.jctc.8b00959.

[155] Yumeng Li, Weirong Xiao, and Pingfeng Wang. Uncertainty
quantification of artificial neural network based machine learning
potentials. In Volume 12: Materials: Genetics to Structures, 11
2018. doi: 10.1115/imece2018-88071. URL https://doi.org/10.1115/

imece2018-88071.

[156] V. Botu, R. Batra, J. Chapman, and R. Ramprasad. Machine learning
force fields: Construction, validation, and outlook. The Journal of
Physical Chemistry C, 121(1):511–522, 2016. doi: 10.1021/acs.jpcc.
6b10908. URL https://doi.org/10.1021/acs.jpcc.6b10908.

145

https://doi.org/10.1038/s41524-020-0283-z
https://doi.org/10.1038/s41524-020-0283-z
https://doi.org/10.1038/s41524-021-00510-y
https://doi.org/10.1038/s41524-020-00390-8
https://doi.org/10.1038/s41524-020-00390-8
https://doi.org/10.1039/c9sc02298h
https://doi.org/10.1088/2632-2153/ab7e1a
https://doi.org/10.1021/acs.jctc.8b00959
https://doi.org/10.1021/acs.jctc.8b00959
https://doi.org/10.1115/imece2018-88071
https://doi.org/10.1115/imece2018-88071
https://doi.org/10.1021/acs.jpcc.6b10908

[157] Geir K. Nilsen, Antonella Z. Munthe-Kaas, Hans J. Skaug, and Morten
Brun. Epistemic uncertainty quantification in deep learning classification
by the delta method. CoRR, 2019. URL http://arxiv.org/abs/1912.

00832v2.

[158] autograd: https://github.com/HIPS/autograd. URL https://github.

com/HIPS/autograd.

[159] Levent Sagun, Leon Bottou, and Yann LeCun. Eigenvalues of the
Hessian in deep learning: Singularity and beyond. CoRR, 2016. URL
http://arxiv.org/abs/1611.07476v2.

[160] Guy Gur-Ari, Daniel A. Roberts, and Ethan Dyer. Gradient descent
happens in a tiny subspace. CoRR, 2018. URL http://arxiv.org/

abs/1812.04754v1.

[161] Jeff Gill and Gary King. What to do when your Hessian is
not invertible. Sociological Methods & Research, 33(1):54–87, 2004.
doi: 10.1177/0049124103262681. URL https://doi.org/10.1177/

0049124103262681.

[162] Sheung Hun Cheng and Nicholas J. Higham. A modified cholesky
algorithm based on a symmetric indefinite factorization. SIAM J.
MATRIX ANAL. APPL, 1998.

[163] PyTorch: https://pytorch.org/. URL https://pytorch.org/.

[164] Brett W. Larsen, Stanislav Fort, Nic Becker, and Surya Ganguli. How
many degrees of freedom do we need to train deep networks: A loss
landscape perspective. CoRR, 2021. URL http://arxiv.org/abs/

2107.05802v1.

[165] Salvatore Ingrassia and Isabella Morlini. Equivalent number of degrees
of freedom for neural networks. In Reinhold Decker and Hans J. Lenz,
editors, Advances in Data Analysis, pages 229–236, Berlin, Heidelberg,
2007. Springer Berlin Heidelberg. ISBN 978-3-540-70981-7.

[166] Tianxiang Gao and Vladimir Jojic. Degrees of freedom in deep neural
networks. In Proceedings of the Thirty-Second Conference on Uncertainty
in Artificial Intelligence, UAI’16, pages 232–241, Arlington, Virginia,
USA, 2016. AUAI Press. ISBN 9780996643115. URL https://www.

auai.org/uai2016/proceedings/papers/257.pdf.

[167] Jörg Behler. Atom-centered symmetry functions for constructing high-
dimensional neural network potentials. The Journal of Chemical Physics,
134(7):074106, 2011. doi: 10.1063/1.3553717. URL https://doi.org/

10.1063/1.3553717.

146

http://arxiv.org/abs/1912.00832v2
http://arxiv.org/abs/1912.00832v2
https://github.com/HIPS/autograd
https://github.com/HIPS/autograd
http://arxiv.org/abs/1611.07476v2
http://arxiv.org/abs/1812.04754v1
http://arxiv.org/abs/1812.04754v1
https://doi.org/10.1177/0049124103262681
https://doi.org/10.1177/0049124103262681
https://pytorch.org/
http://arxiv.org/abs/2107.05802v1
http://arxiv.org/abs/2107.05802v1
https://www.auai.org/uai2016/proceedings/papers/257.pdf
https://www.auai.org/uai2016/proceedings/papers/257.pdf
https://doi.org/10.1063/1.3553717
https://doi.org/10.1063/1.3553717

[168] M. Gastegger, L. Schwiedrzik, M. Bittermann, F. Berzsenyi, and
P. Marquetand. WACSF-weighted atom-centered symmetry functions
as descriptors in machine learning potentials. The Journal of Chemical
Physics, 148(24):241709, 2018. doi: 10.1063/1.5019667. URL https:

//doi.org/10.1063/1.5019667.

[169] Mingjie Liu and John R. Kitchin. SingleNN: Modified Behler-Parrinello
neural network with shared weights for atomistic simulations with
transferability. The Journal of Physical Chemistry C, 124(32):17811–
17818, 2020. doi: 10.1021/acs.jpcc.0c04225. URL https://doi.org/

10.1021/acs.jpcc.0c04225.

[170] Jacob R. Boes and John R. Kitchin. Modeling segregation on AuPd(111)
surfaces with density functional theory and Monte Carlo simulations.
The Journal of Physical Chemistry C, 121(6):3479–3487, 2017. doi:
10.1021/acs.jpcc.6b12752. URL https://doi.org/10.1021/acs.jpcc.

6b12752.

[171] K. Miki, M. Panesi, E.E. Prudencio, and S. Prudhomme. Probabilistic
models and uncertainty quantification for the ionization reaction rate of
atomic nitrogen. Journal of Computational Physics, 231(9):3871–3886,
2012. doi: 10.1016/j.jcp.2012.01.005. URL https://doi.org/10.1016/

j.jcp.2012.01.005.

[172] László Zimányi, Áron Sipos, Ferenc Sarlós, Rita Nagypál, and Géza I.
Groma. Machine-learning model selection and parameter estimation
from kinetic data of complex first-order reaction systems. PLOS ONE,
16(8):e0255675, 2021. doi: 10.1371/journal.pone.0255675. URL https:

//doi.org/10.1371/journal.pone.0255675.

[173] Nils E Napp and Ryan P Adams. Message passing inference with
chemical reaction networks. Advances in neural information processing
systems, 26:2247–2255, 2013.

[174] Alexandre Allard, Nicolas Fischer, Géraldine Ebrard, Bruno Hay, Peter
Harris, Louise Wright, Denis Rochais, and Jeremie Mattout. A multi-
thermogram-based Bayesian model for the determination of the thermal
diffusivity of a material. Metrologia, 53(1):S1–S9, 2015. doi: 10.1088/
0026-1394/53/1/s1. URL https://doi.org/10.1088/0026-1394/53/

1/s1.

[175] Michael Griebel and Jan Hamaekers. Molecular dynamics simulations of
the elastic moduli of polymer-carbon nanotube composites. Computer
Methods in Applied Mechanics and Engineering, 193(17-20):1773–1788,
2004. doi: 10.1016/j.cma.2003.12.025. URL https://doi.org/10.

1016/j.cma.2003.12.025.

147

https://doi.org/10.1063/1.5019667
https://doi.org/10.1063/1.5019667
https://doi.org/10.1021/acs.jpcc.0c04225
https://doi.org/10.1021/acs.jpcc.0c04225
https://doi.org/10.1021/acs.jpcc.6b12752
https://doi.org/10.1021/acs.jpcc.6b12752
https://doi.org/10.1016/j.jcp.2012.01.005
https://doi.org/10.1016/j.jcp.2012.01.005
https://doi.org/10.1371/journal.pone.0255675
https://doi.org/10.1371/journal.pone.0255675
https://doi.org/10.1088/0026-1394/53/1/s1
https://doi.org/10.1088/0026-1394/53/1/s1
https://doi.org/10.1016/j.cma.2003.12.025
https://doi.org/10.1016/j.cma.2003.12.025

[176] Yang Kang, Dunhong Zhou, Qiang Wu, Fuyan Duan, Rufang Yao, and
Kun Cai. Fully atomistic molecular dynamics computation of physico-
mechanical properties of PB, PS, and SBS. Nanomaterials, 9(8):1088,
2019. doi: 10.3390/nano9081088. URL https://doi.org/10.3390/

nano9081088.

[177] Muhammad Akbar Elnanda Dzulfikar, Dyah Hikmawati, and Adri
Supardi. Molecular dynamics simulation to determine elastic constant
and bulk modulus from MgxZn. In The 2nd International Conference
On Physical Instrumentation And Advanced Materials 2019, 2020. doi:
10.1063/5.0035227. URL https://doi.org/10.1063/5.0035227.

[178] Marc C. Kennedy and Anthony O’Hagan. Bayesian calibration of
computer models. Journal of the Royal Statistical Society: Series B
(Statistical Methodology), 63(3):425–464, 2001. doi: 10.1111/1467-9868.
00294. URL https://doi.org/10.1111/1467-9868.00294.

[179] Bratislav Lukić, Dominique Saletti, and Pascal Forquin. Use of simulated
experiments for material characterization of brittle materials subjected
to high strain rate dynamic tension. Philosophical Transactions of the
Royal Society A: Mathematical, Physical and Engineering Sciences, 375
(2085):20160168, 2017. doi: 10.1098/rsta.2016.0168. URL https://

doi.org/10.1098/rsta.2016.0168.

[180] Eyke Hüllermeier and Willem Waegeman. Aleatoric and epistemic
uncertainty in machine learning: An introduction to concepts
and methods. Machine Learning, 110(3):457–506, 2021. doi:
10.1007/s10994-021-05946-3. URL https://doi.org/10.1007/

s10994-021-05946-3.

[181] Alex Kendall and Yarin Gal. What uncertainties do we need in Bayesian
deep learning for computer vision? arXiv, 2017. URL http://arxiv.

org/abs/1703.04977v2.

[182] Zoubin Ghahramani. Probabilistic machine learning and artificial
intelligence. Nature, 521(7553):452–459, 2015. doi: 10.1038/
nature14541. URL https://doi.org/10.1038/nature14541.

[183] Alim B. Alchagirov, John P. Perdew, Jonathan C. Boettger, R. C.
Albers, and Carlos Fiolhais. Energy and pressure versus volume:
Equations of state motivated by the stabilized jellium model. Physical
Review B, 63(22):224115, 2001. doi: 10.1103/physrevb.63.224115. URL
https://doi.org/10.1103/physrevb.63.224115.

[184] James H. Rose, John R. Smith, Francisco Guinea, and John Ferrante.
Universal features of the equation of state of metals. Physical Review
B, 29(6):2963–2969, 1984. doi: 10.1103/physrevb.29.2963. URL https:

//doi.org/10.1103/physrevb.29.2963.

148

https://doi.org/10.3390/nano9081088
https://doi.org/10.3390/nano9081088
https://doi.org/10.1063/5.0035227
https://doi.org/10.1111/1467-9868.00294
https://doi.org/10.1098/rsta.2016.0168
https://doi.org/10.1098/rsta.2016.0168
https://doi.org/10.1007/s10994-021-05946-3
https://doi.org/10.1007/s10994-021-05946-3
http://arxiv.org/abs/1703.04977v2
http://arxiv.org/abs/1703.04977v2
https://doi.org/10.1038/nature14541
https://doi.org/10.1103/physrevb.63.224115
https://doi.org/10.1103/physrevb.29.2963
https://doi.org/10.1103/physrevb.29.2963

[185] J.-P Poirier and A Tarantola. A logarithmic equation of state.
Physics of the Earth and Planetary Interiors, 109(1-2):1–8, 1998.
doi: 10.1016/s0031-9201(98)00112-5. URL https://doi.org/10.1016/

s0031-9201(98)00112-5.

[186] P Vinet, J Ferrante, J R Smith, and J H Rose. A universal equation
of state for solids. Journal of Physics C: Solid State Physics, 19(20):
L467–L473, 1986. doi: 10.1088/0022-3719/19/20/001. URL https:

//doi.org/10.1088/0022-3719/19/20/001.

[187] Dennis Grady. Equation of state for solids. AIP Conference Proceedings,
1426(1):800–803, 2012. doi: 10.1063/1.3686399. URL https://aip.

scitation.org/doi/abs/10.1063/1.3686399.

[188] Michel H. G. Jacobs and Harry A. J. Oonk. A new equation of state
based on Grover, Getting and Kennedy’s empirical relation between
volume and bulk modulus. The high-pressure thermodynamics of MgO.
Physical Chemistry Chemical Physics, 2(11):2641–2646, 2000. doi:
10.1039/a910247g. URL https://doi.org/10.1039/a910247g.

[189] Daphne Koller and Nir Friedman. Probabilistic graphical models:
principles and techniques. MIT press, 2009.

[190] Paolo Gardoni, David Trejo, Marina Vannucci, and Chandan
Bhattacharjee. Probabilistic models for modulus of elasticity of self-
consolidated concrete: Bayesian approach. Journal of Engineering
Mechanics, 135(4):295–306, 2009. doi: 10.1061/(asce)0733-9399(2009)
135:4(295). URL https://doi.org/10.1061/(asce)0733-9399(2009)

135:4(295).

[191] W.F. Wu and C.C. Ni. Probabilistic models of fatigue crack propagation
and their experimental verification. Probabilistic Engineering Mechanics,
19(3):247–257, 2004. doi: 10.1016/j.probengmech.2004.02.008. URL
https://doi.org/10.1016/j.probengmech.2004.02.008.

[192] Ahmad BahooToroody, Filippo De Carlo, Nicola Paltrinieri, Mario
Tucci, and P.H.A.J.M. Van Gelder. Bayesian regression based
condition monitoring approach for effective reliability prediction of
random processes in autonomous energy supply operation. Reliability
Engineering & System Safety, 201:106966, 2020. doi: 10.1016/j.ress.
2020.106966. URL https://doi.org/10.1016/j.ress.2020.106966.

[193] Yusheng Lu, Xin Peng, Dan Yang, Chao Jiang, and Weimin Zhong.
The probabilistic discriminative time-series model with latent variables
and its application to industrial chemical process modeling. Chemical
Engineering Journal, 423:130298, 2021. doi: 10.1016/j.cej.2021.130298.
URL https://doi.org/10.1016/j.cej.2021.130298.

149

https://doi.org/10.1016/s0031-9201(98)00112-5
https://doi.org/10.1016/s0031-9201(98)00112-5
https://doi.org/10.1088/0022-3719/19/20/001
https://doi.org/10.1088/0022-3719/19/20/001
https://aip.scitation.org/doi/abs/10.1063/1.3686399
https://aip.scitation.org/doi/abs/10.1063/1.3686399
https://doi.org/10.1039/a910247g
https://doi.org/10.1061/(asce)0733-9399(2009)135:4(295)
https://doi.org/10.1061/(asce)0733-9399(2009)135:4(295)
https://doi.org/10.1016/j.probengmech.2004.02.008
https://doi.org/10.1016/j.ress.2020.106966
https://doi.org/10.1016/j.cej.2021.130298

[194] Tao Chen and Yue Sun. Probabilistic contribution analysis for statistical
process monitoring: A missing variable approach. Control Engineering
Practice, 17(4):469–477, 2009. doi: 10.1016/j.conengprac.2008.09.005.
URL https://doi.org/10.1016/j.conengprac.2008.09.005.

[195] Jose E. Tabora, Jacob Albrecht, and Brendan Mack. Probabilistic
Models for Forecasting Process Robustness, pages 919–935. Chemical
Engineering in the Pharmaceutical Industry. John Wiley & Sons, Inc.,
2019. doi: 10.1002/9781119600800.ch41. URL https://doi.org/10.

1002/9781119600800.ch41.

[196] Stefano Andreon and Brian Weaver. Bayesian Methods for the Physical
Sciences. Springer Series in Astrostatistics. Springer International
Publishing, 2015. doi: 10.1007/978-3-319-15287-5. URL https://doi.

org/10.1007/978-3-319-15287-5.

[197] Volker L. Deringer, Albert P. Bartók, Noam Bernstein, David M.
Wilkins, Michele Ceriotti, and Gábor Csányi. Gaussian process
regression for materials and molecules. Chemical Reviews, 121(16):
10073–10141, 2021. doi: 10.1021/acs.chemrev.1c00022. URL https:

//doi.org/10.1021/acs.chemrev.1c00022.

[198] Albert P. Bartók and Gábor Csányi. Gaussian approximation potentials:
A brief tutorial introduction. International Journal of Quantum
Chemistry, 115(16):1051–1057, 2015. doi: 10.1002/qua.24927. URL
https://doi.org/10.1002/qua.24927.

[199] Davis Unruh, Reza Vatan Meidanshahi, Stephen M. Goodnick, and
Gergely T. Zimányi. Training a machine-learning driven Gaussian
approximation potential for Si-H interactions. arXiv:2106.02946, 2021.
URL http://arxiv.org/abs/2106.02946v2.

[200] Ganesh Sivaraman, Anand Narayanan Krishnamoorthy, Matthias Baur,
Christian Holm, Marius Stan, Gábor Csányi, Chris Benmore, and Álvaro
Vázquez-Mayagoitia. Machine-learned interatomic potentials by active
learning: Amorphous and liquid hafnium dioxide. npj Computational
Materials, 6(1):104, 2020. doi: 10.1038/s41524-020-00367-7. URL
https://doi.org/10.1038/s41524-020-00367-7.

[201] Patrick Rowe, Gábor Csányi, Dario Alfè, and Angelos Michaelides.
Development of a machine learning potential for graphene. Physical
Review B, 97(5):054303, 2018. doi: 10.1103/physrevb.97.054303. URL
https://doi.org/10.1103/physrevb.97.054303.

[202] Volker L. Deringer, Miguel A. Caro, and Gábor Csányi. A general-
purpose machine-learning force field for bulk and nanostructured
phosphorus. Nature Communications, 11(1):5461, 2020. doi:

150

https://doi.org/10.1016/j.conengprac.2008.09.005
https://doi.org/10.1002/9781119600800.ch41
https://doi.org/10.1002/9781119600800.ch41
https://doi.org/10.1007/978-3-319-15287-5
https://doi.org/10.1007/978-3-319-15287-5
https://doi.org/10.1021/acs.chemrev.1c00022
https://doi.org/10.1021/acs.chemrev.1c00022
https://doi.org/10.1002/qua.24927
http://arxiv.org/abs/2106.02946v2
https://doi.org/10.1038/s41524-020-00367-7
https://doi.org/10.1103/physrevb.97.054303

10.1038/s41467-020-19168-z. URL https://doi.org/10.1038/

s41467-020-19168-z.

[203] Conrad W. Rosenbrock, Konstantin Gubaev, Alexander V. Shapeev,
Livia B. Pártay, Noam Bernstein, Gábor Csányi, and Gus L. W.
Hart. Machine-learned interatomic potentials for alloys and alloy
phase diagrams. npj Computational Materials, 7(1):24, 2021.
doi: 10.1038/s41524-020-00477-2. URL https://doi.org/10.1038/

s41524-020-00477-2.

[204] Olli-Pekka Koistinen, Vilhjálmur Ásgeirsson, Aki Vehtari, and Hannes
Jónsson. Nudged elastic band calculations accelerated with Gaussian
process regression based on inverse interatomic distances. Journal
of Chemical Theory and Computation, 15(12):6738–6751, 2019. doi:
10.1021/acs.jctc.9b00692. URL https://doi.org/10.1021/acs.jctc.

9b00692.

[205] José A. Garrido Torres, Paul C. Jennings, Martin H. Hansen, Jacob R.
Boes, and Thomas Bligaard. Low-scaling algorithm for nudged elastic
band calculations using a surrogate machine learning model. Physical
Review Letters, 122(15):156001, 2019. doi: 10.1103/physrevlett.122.
156001. URL https://doi.org/10.1103/physrevlett.122.156001.

[206] Malthe K. Bisbo and Bjørk Hammer. Efficient global structure
optimization with a machine-learned surrogate model. Physical Review
Letters, 124(8):086102, 2020. doi: 10.1103/physrevlett.124.086102. URL
https://doi.org/10.1103/physrevlett.124.086102.

[207] Indranil Pan and Daya Shankar Pandey. Incorporating uncertainty
in data driven regression models of fluidized bed gasification: A
Bayesian approach. Fuel Processing Technology, 142:305–314, 2016.
doi: 10.1016/j.fuproc.2015.10.027. URL https://doi.org/10.1016/j.

fuproc.2015.10.027.

[208] David M. Blei, Alp Kucukelbir, and Jon D. McAuliffe. Variational
inference: A review for statisticians. Journal of the American Statistical
Association, 112(518):859–877, 2017. doi: 10.1080/01621459.2017.
1285773. URL https://doi.org/10.1080/01621459.2017.1285773.

[209] Pavel Izmailov, Sharad Vikram, Matthew D. Hoffman, and
Andrew Gordon Wilson. What are Bayesian neural network posteriors
really like? arXiv:2104.14421, 2021. URL http://arxiv.org/abs/

2104.14421v1.

[210] Rajesh Ranganath, Sean Gerrish, and David Blei. Black box variational
inference. In Artificial intelligence and statistics, pages 814–822. PMLR,
2014.

151

https://doi.org/10.1038/s41467-020-19168-z
https://doi.org/10.1038/s41467-020-19168-z
https://doi.org/10.1038/s41524-020-00477-2
https://doi.org/10.1038/s41524-020-00477-2
https://doi.org/10.1021/acs.jctc.9b00692
https://doi.org/10.1021/acs.jctc.9b00692
https://doi.org/10.1103/physrevlett.122.156001
https://doi.org/10.1103/physrevlett.124.086102
https://doi.org/10.1016/j.fuproc.2015.10.027
https://doi.org/10.1016/j.fuproc.2015.10.027
https://doi.org/10.1080/01621459.2017.1285773
http://arxiv.org/abs/2104.14421v1
http://arxiv.org/abs/2104.14421v1

[211] Matthew D Hoffman, David M Blei, Chong Wang, and John Paisley.
Stochastic variational inference. Journal of Machine Learning Research,
14(5), 2013.

[212] Diederik P Kingma and Max Welling. Auto-encoding variational Bayes.
arXiv:1312.6114, 2013. URL http://arxiv.org/abs/1312.6114v10.

[213] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic
optimization. arXiv:1412.6980v9, 2014. URL http://arxiv.org/abs/

1412.6980v9.

[214] Radford M. Neal. MCMC Using Hamiltonian Dynamics, chapter 5. CRC
Press, 2011. doi: 10.1201/b10905-7.

[215] Matthew D Hoffman, Andrew Gelman, et al. The No-U-Turn sampler:
Adaptively setting path lengths in Hamiltonian Monte Carlo. J. Mach.
Learn. Res., 15(1):1593–1623, 2014.

[216] Agathe Girard. Approximate methods for propagation of uncertainty
with Gaussian process models. University of Glasgow (United Kingdom),
2004.

[217] David Duvenaud. Automatic model construction with Gaussian
processes. PhD thesis, University of Cambridge, 2014.

[218] Richard P Brent. Algorithms for minimization without derivatives.
Courier Corporation, 2013.

[219] Jacob R. Boes, Mitchell C. Groenenboom, John A. Keith, and John R.
Kitchin. Neural network and ReaxFF comparison for Au properties.
International Journal of Quantum Chemistry, 116(13):979–987, 2016.
doi: 10.1002/qua.25115. URL https://doi.org/10.1002/qua.25115.

[220] B. Mayer, H. Anton, E. Bott, M. Methfessel, J. Sticht, J. Harris, and
P.C. Schmidt. Ab-initio calculation of the elastic constants and thermal
expansion coefficients of Laves phases. Intermetallics, 11(1):23–32, 2003.
doi: 10.1016/s0966-9795(02)00127-9. URL https://doi.org/10.1016/

s0966-9795(02)00127-9.

[221] C. L. Fu and K. M. Ho. First-principles calculation of the equilibrium
ground-state properties of transition metals: Applications to Nb and
Mo. Physical Review B, 28(10):5480–5486, 1983. doi: 10.1103/physrevb.
28.5480. URL https://doi.org/10.1103/physrevb.28.5480.

[222] M. Hebbache and M. Zemzemi. Ab initio study of high-pressure behavior
of a low compressibility metal and a hard material: Osmium and
diamond. Physical Review B, 70(22):224107, 2004. doi: 10.1103/
physrevb.70.224107. URL https://doi.org/10.1103/physrevb.70.

224107.

152

http://arxiv.org/abs/1312.6114v10
http://arxiv.org/abs/1412.6980v9
http://arxiv.org/abs/1412.6980v9
https://doi.org/10.1002/qua.25115
https://doi.org/10.1016/s0966-9795(02)00127-9
https://doi.org/10.1016/s0966-9795(02)00127-9
https://doi.org/10.1103/physrevb.28.5480
https://doi.org/10.1103/physrevb.70.224107
https://doi.org/10.1103/physrevb.70.224107

[223] Clemens Elster and Gerd Wübbeler. Bayesian regression versus
application of least squares-an example. Metrologia, 53(1):S10–S16,
2015. doi: 10.1088/0026-1394/53/1/s10. URL https://doi.org/10.

1088/0026-1394/53/1/s10.

[224] Dan Lu, Ming Ye, and Mary C. Hill. Analysis of regression confidence
intervals and Bayesian credible intervals for uncertainty quantification.
Water Resources Research, 48(9), 2012. doi: 10.1029/2011wr011289.
URL https://doi.org/10.1029/2011wr011289.

[225] G J P Kok, A M H van der Veen, P M Harris, I M Smith, and C Elster.
Bayesian analysis of a flow meter calibration problem. Metrologia, 52(2):
392–399, 2015. doi: 10.1088/0026-1394/52/2/392. URL https://doi.

org/10.1088/0026-1394/52/2/392.

[226] Haitao Liu, Yew-Soon Ong, Xiaobo Shen, and Jianfei Cai. When
Gaussian process meets big data: A review of scalable GPs. IEEE
Transactions on Neural Networks and Learning Systems, 31(11):4405–
4423, 2020. doi: 10.1109/tnnls.2019.2957109. URL https://doi.org/

10.1109/tnnls.2019.2957109.

[227] Sivaram Ambikasaran, Daniel Foreman-Mackey, Leslie Greengard,
David W. Hogg, and Michael O’Neil. Fast direct methods for Gaussian
processes. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 38(2):252–265, 2016. doi: 10.1109/tpami.2015.2448083.
URL https://doi.org/10.1109/tpami.2015.2448083.

[228] Ke Alexander Wang, Geoff Pleiss, Jacob R. Gardner, Stephen Tyree,
Kilian Q. Weinberger, and Andrew Gordon Wilson. Exact Gaussian
processes on a million data points. arXiv:1903.08114, 2019. URL http:

//arxiv.org/abs/1903.08114v2.

[229] James Hensman, Nicolo Fusi, and Neil D. Lawrence. Gaussian processes
for big data. arXiv:1309.6835, 2013. URL http://arxiv.org/abs/

1309.6835v1.

[230] A. Banerjee, D. B. Dunson, and S. T. Tokdar. Efficient Gaussian
process regression for large datasets. Biometrika, 100(1):75–89, 2012.
doi: 10.1093/biomet/ass068. URL https://doi.org/10.1093/biomet/

ass068.

[231] Samuel S. Schoenholz and Ekin D. Cubuk. Jax, M.D.: A framework
for differentiable physics. CoRR, 2019. URL http://arxiv.org/abs/

1912.04232v2.

[232] Stephan Thaler and Julija Zavadlav. Learning neural network potentials
from experimental data via differentiable trajectory reweighting. CoRR,
2021. URL http://arxiv.org/abs/2106.01138v1.

153

https://doi.org/10.1088/0026-1394/53/1/s10
https://doi.org/10.1088/0026-1394/53/1/s10
https://doi.org/10.1029/2011wr011289
https://doi.org/10.1088/0026-1394/52/2/392
https://doi.org/10.1088/0026-1394/52/2/392
https://doi.org/10.1109/tnnls.2019.2957109
https://doi.org/10.1109/tnnls.2019.2957109
https://doi.org/10.1109/tpami.2015.2448083
http://arxiv.org/abs/1903.08114v2
http://arxiv.org/abs/1903.08114v2
http://arxiv.org/abs/1309.6835v1
http://arxiv.org/abs/1309.6835v1
https://doi.org/10.1093/biomet/ass068
https://doi.org/10.1093/biomet/ass068
http://arxiv.org/abs/1912.04232v2
http://arxiv.org/abs/1912.04232v2
http://arxiv.org/abs/2106.01138v1

[233] Tian Xie and Jeffrey C. Grossman. Crystal graph convolutional
neural networks for an accurate and interpretable prediction of
material properties. Physical Review Letters, 120(14):145301, 2018.
doi: 10.1103/physrevlett.120.145301. URL https://doi.org/10.1103/

physrevlett.120.145301.

[234] Stefan Chmiela, Alexandre Tkatchenko, Huziel E. Sauceda, Igor
Poltavsky, Kristof T. Schütt, and Klaus-Robert Müller. Machine
learning of accurate energy-conserving molecular force fields. Science
Advances, 3(5), 2017. doi: 10.1126/sciadv.1603015. URL https:

//doi.org/10.1126/sciadv.1603015.

[235] Stefan Chmiela, Huziel E. Sauceda, Klaus-Robert Müller, and Alexandre
Tkatchenko. Towards exact molecular dynamics simulations with
machine-learned force fields. Nature Communications, 9(1):3887, 2018.
doi: 10.1038/s41467-018-06169-2. URL https://doi.org/10.1038/

s41467-018-06169-2.

[236] K. T. Schütt, H. E. Sauceda, P.-J. Kindermans, A. Tkatchenko, and
K.-R. Müller. SchNet - A deep learning architecture for molecules and
materials. The Journal of Chemical Physics, 148(24):241722, 2018. doi:
10.1063/1.5019779. URL https://doi.org/10.1063/1.5019779.

[237] Steven Kearnes, Kevin McCloskey, Marc Berndl, Vijay Pande, and
Patrick Riley. Molecular graph convolutions: Moving beyond
fingerprints. Journal of Computer-Aided Molecular Design, 30(8):595–
608, 2016. doi: 10.1007/s10822-016-9938-8. URL https://doi.org/

10.1007/s10822-016-9938-8.

[238] Oliver T. Unke and Markus Meuwly. PhysNet: A neural network for
predicting energies, forces, dipole moments, and partial charges. Journal
of Chemical Theory and Computation, 15(6):3678–3693, 2019. doi:
10.1021/acs.jctc.9b00181. URL https://doi.org/10.1021/acs.jctc.

9b00181.

[239] Simon Batzner, Albert Musaelian, Lixin Sun, Mario Geiger, Jonathan P.
Mailoa, Mordechai Kornbluth, Nicola Molinari, Tess E. Smidt, and Boris
Kozinsky. SE(3)-equivariant graph neural networks for data-efficient and
accurate interatomic potentials. CoRR, 2021. URL http://arxiv.org/

abs/2101.03164v2.

[240] Johannes Klicpera, Florian Becker, and Stephan Günnemann. GemNet:
Universal directional graph neural networks for molecules. CoRR, 2021.
URL http://arxiv.org/abs/2106.08903v2.

[241] Johannes Klicpera, Janek Groß, and Stephan Günnemann. Directional
message passing for molecular graphs. CoRR, 2020. URL http:

//arxiv.org/abs/2003.03123v1.

154

https://doi.org/10.1103/physrevlett.120.145301
https://doi.org/10.1103/physrevlett.120.145301
https://doi.org/10.1126/sciadv.1603015
https://doi.org/10.1126/sciadv.1603015
https://doi.org/10.1038/s41467-018-06169-2
https://doi.org/10.1038/s41467-018-06169-2
https://doi.org/10.1063/1.5019779
https://doi.org/10.1007/s10822-016-9938-8
https://doi.org/10.1007/s10822-016-9938-8
https://doi.org/10.1021/acs.jctc.9b00181
https://doi.org/10.1021/acs.jctc.9b00181
http://arxiv.org/abs/2101.03164v2
http://arxiv.org/abs/2101.03164v2
http://arxiv.org/abs/2106.08903v2
http://arxiv.org/abs/2003.03123v1
http://arxiv.org/abs/2003.03123v1

[242] Lowik Chanussot, Abhishek Das, Siddharth Goyal, Thibaut Lavril,
Muhammed Shuaibi, Morgane Riviere, Kevin Tran, Javier Heras-
Domingo, Caleb Ho, Weihua Hu, Aini Palizhati, Anuroop Sriram,
Brandon Wood, Junwoong Yoon, Devi Parikh, C. Lawrence Zitnick, and
Zachary Ulissi. Open Catalyst 2020 (OC20) dataset and community
challenges. ACS Catalysis, 11(10):6059–6072, 2021. doi: 10.
1021/acscatal.0c04525. URL https://doi.org/10.1021/acscatal.

0c04525.

[243] Muhammed Shuaibi, Adeesh Kolluru, Abhishek Das, Aditya Grover,
Anuroop Sriram, Zachary Ulissi, and C. Lawrence Zitnick. Rotation
invariant graph neural networks using spin convolutions. CoRR, 2021.
URL http://arxiv.org/abs/2106.09575v1.

[244] Yu Li, Xiaohong Zhang, Ashwin Srinath, Rachel B. Getman, and
Linh B. Ngo. Combining HPC and big data infrastructures in large-
scale post-processing of simulation data. In Proceedings of the Practice
and Experience on Advanced Research Computing, 7 2018. doi: 10.1145/
3219104.3229279. URL https://doi.org/10.1145/3219104.3229279.

[245] Douglas M. Reitz and Estela Blaisten-Barojas. Simulating the NaK
eutectic alloy with Monte Carlo and machine learning. Scientific Reports,
9(1):704, 2019. doi: 10.1038/s41598-018-36574-y. URL https://doi.

org/10.1038/s41598-018-36574-y.

[246] James Martens and Roger Grosse. Optimizing neural networks with
Kronecker-factored approximate curvature. CoRR, 2015. URL http:

//arxiv.org/abs/1503.05671v7.

155

https://doi.org/10.1021/acscatal.0c04525
https://doi.org/10.1021/acscatal.0c04525
http://arxiv.org/abs/2106.09575v1
https://doi.org/10.1145/3219104.3229279
https://doi.org/10.1038/s41598-018-36574-y
https://doi.org/10.1038/s41598-018-36574-y
http://arxiv.org/abs/1503.05671v7
http://arxiv.org/abs/1503.05671v7

A Details for Ni-Al-W data
We describe some additional details about the datasets. The data can be

found on https://euler.phys.cmu.edu/widom/tmp/ForJK/ in vasprun.xml
files, and specific paths and the db filenames are in Table A.1. Datasets A,
B, D, G, H have additional subfolders following the listed paths. For Datasets
A, B, C, D, we used the vasprun.xml files only. Datasets E, G, H, J have
vasprun.xml.mdxxxx files which are continuous MD trajectories in between
attempted MC steps. For Dataset D, 96/../series1/ were not used because
they were for DFT testing. We did not use Datasets H and J, but they
could be used in future work. In Dataset J, the volumes range from 12.0 to

14.5 Å
3
/atom, and the Vrun file gives the volume within the T=* directory.

Dataset F was not from the website but from an outcar.1 file.

Table A.1: Datasets with paths

Path db file

A. 32/long-runs/ ni-al-w-def.db
B. 500/ ni-al-w-500.db
C. 64/series1/2000/, ...,

64/series7/2000/,
64/series2/2000/convergence/

ni-al-w-64.db

D. 96/V+1/series2/, 96/V-1/series2/,
96/V/series2/

ni-al-w-96-2-s2.db

E. 96-more/V+1/, 96-more/V-1/,
96-more/V/Al14Ni77W5/, ...,
96-more/V/Al12Ni79W5/

ni-al-w-96-2200-v+1.db,
ni-al-w-96-2200-v-1.db,
ni-al-w-96-2200-al14ni77w5.db,
ni-al-w-96-2200-al12ni79w5.db,
ni-al-w-96-2200-al16ni77w3.db,
ni-al-w-96-2200-al17ni73w6.db,
ni-al-w-96-2200-all.db (former
6 db consolidated)

F. outcar.1, outcar-500.db
G. 32-more/ ni-al-w-32-more-all.db
H. N96-take3/V+1/,

N96-take3/V-1/,
N96-take3/V/

J. replica-more/T=1720/, ...,
replica-more/T=2470/

156

https://euler.phys.cmu.edu/widom/tmp/ForJK/

B Settings for hyperparameter study

Table B.1: Number of radial functions detailed settings

No. of sets
G2

η’s

1 0.25
2 0.08, 0.25
3 0.03, 0.08, 0.25
4 0, 0.03, 0.08, 0.25
5 0, 0.02, 0.06, 0.18, 0.4
6 0.012, 0.025, 0.05, 0.10, 0.23, 0.50
9 0, 0.01, 0.02, 0.035, 0.055, 0.08, 0.13, 0.23, 0.4
10 0, 0.01, 0.02, 0.035, 0.055, 0.08, 0.13, 0.23, 0.4, 0.75

157

Table B.2: Shifted and non-shifted radial functions detailed settings

No. Model η Rs

1 4shift 0.4 0
0.4 3.1
0.4 6.4
0.4 9.1

2 1eta-3shift 0.03 0
0.4 3.5
0.4 7
0.4 9.8

3 2eta-2shift 0.01 0
0.08 0
0.4 3.5
0.4 7

4 2eta-2shift 0.2 0
0.22 0
0.4 1.5
0.4 7

5 3eta-1shift 0 0
0.03 0
0.25 0
0.4 5.5

6 3eta-1shift 0.04 0
0.09 0
0.28 0
0.4 6.5

7 4eta 0.04 0
0.08 0
0.25 0
0.6 0

Table B.3: Cutoff radius detailed settings

Cutoff radius
(Bohr)

η’s

8 0.02, 0.06, 0.13, 0.25
9 0.02, 0.06, 0.13, 0.25
12 0, 0.03, 0.08, 0.25
14 0.02, 0.06, 0.13, 0.3

158

Table B.4: Angular functions and four radial functions detailed settings

No. Model η’s λ ζ

1 1ang 0.02, 0.05, 0.10, 0.35
-1 1

2 1ang 0.02, 0.05, 0.10, 0.35
1 2

3 1ang 0.02, 0.05, 0.10, 0.35
-1 2

4 1ang 0.02, 0.05, 0.10, 0.35
1 4

5 2ang 0.03, 0.06, 0.13, 0.40
1 8
1 12

6 2ang 0.03, 0.06, 0.13, 0.40
1 12
1 24

7 2ang 0.02, 0.05, 0.10, 0.35
1 1
1 4

8 4ang 0.02, 0.05, 0.10, 0.35
1 2
1 4
1 8
1 16

9 4ang 0.02, 0.05, 0.10, 0.35
-1 1
1 2
1 4
1 8

Table B.5: Additional angular models with variable number of radial functions

No. Model Val. Energy
RMSE

Val. Force
RMSE

Time
(hrs)

Epochs

1 1ang-3rad 0.00815 0.3283 3.4 85
2 1ang-3rad 0.00109 0.0340 2.1 53
3 1ang-2rad 0.00344 0.0971 3.3 83
4 1ang-3rad 0.00031 0.0097 4.6 100
5 2ang-2rad 0.00064 0.0199 7.1 100
6 2ang-2rad 0.00121 0.0532 7.9 100

159

Table B.6: Additional angular and radial models detailed settings

No. Model η’s λ ζ

1 1ang-3rad 0.03, 0.08, 0.25
0.03 1 12

2 1ang-3rad 0.03, 0.08, 0.25
0 -1 3

3 1ang-2rad 0.02, 0.22
0 1 12

4 1ang-3rad 0.02, 0.08, 0.22
0 1 8

5 2ang-2rad 0.02, 0.22
0 1 4
0 1 24

6 2ang-2rad 0.02, 0.22
0 -1 1
0 -1 2

160

C Additional MD results for Ni-Al-W
In Section 2.3.3, we included the Ni-W partial radial distribution function

and Green-Kubo and Einstein diffusion constants for Al. Here we include the
remaining results from the NVT simulation.

Figure C.1: Ni diffusivity for ML potential (left) and AIMD (right).

Figure C.2: W diffusivity for ML potential (left) and AIMD (right).

161

Figure C.3: Bulk viscosity for ML potential (left) and AIMD (right).

Figure C.4: Shear viscosity for ML potential (left) and AIMD (right).

162

Figure C.5: Ni-Ni radial distribution function for ML potential (left) and
AIMD (right).

Figure C.6: Ni-Al radial distribution function for ML potential (left) and
AIMD (right).

163

Figure C.7: Al-Al radial distribution function for ML potential (left) and
AIMD (right).

Figure C.8: Al-W radial distribution function for ML potential (left) and
AIMD (right).

164

Figure C.9: W-W radial distribution function for ML potential (left) and
AIMD (right).

Figure C.10: Atomic volume from Voronoi tessellation for ML potential (left)
and AIMD (right).

165

Figure C.11: Average coordination number from Voronoi tessellation for ML
potential (left) and AIMD (right).

166

D Delta method theory
The delta method is based on regression, and gives a standard error of

prediction by linearly approximating the model. We are doing a regression
with data {xi, yi}. Our model predicts y (xi | θ), and the theory of the delta
method assumes that the data output is the sum of the model prediction and
some Gaussian error

yi = y (xi | θ) + εi

with εi ∼ N(0, σi), yi as data output, xi as data input, and θ as model
parameters.

The log likelihood of the data given the model, ln, is

ln = log P ({yi} | θ).

Since we assumed εi was Gaussian,

ln ∝ −
1

2

∑
i

(
yi − y(xi | θ)

σi

)2

.

The above term includes the sum of squared errors which is common as
the loss or regression objective function during training. In least squares
regression, we minimize the sum squared errors to get the maximum likelihood
estimate of parameters, θ̂.

The standard error of θ̂

se(θ̂) ≈ 1√
In(θ)

where In(θ) is the Fisher information matrix defined as

In(θ) = −Eθ
[
∂2 ln({yi} | θ)

∂θ2

]
.

The standard error of θ̂ is obtained from a Taylor’s series expansion around
l′n(θ).116 We are able to obtain this standard error by assuming θ̂ is centered
and Gaussian around the true parameters θ.

In the Fisher information, note that ln is the same log likelihood defined
earlier, so the Fisher information is proportional to the Hessian of the loss
with respect to model parameters, and thus can be readily obtained.

Now we will obtain the standard error of model prediction. Suppose for
function g(θ̂), g′(θ̂) is nonzero, then

se(g(θ̂)) ≈
√

(g′)T I−1
n g′.

The standard error of g(θ̂) is obtained from a Taylor’s series around g(θ)
and using se(θ̂) obtained previously.116

167

The standard error depends on the training data because the Fisher
information depends on the training data. The standard error also depends
on the model, its parameters, and the point we are predicting, because these
determine g′.

In this work, we assume the error εi is independent of the data point xi.
This allows the simplification

ln ∝ −
1

2

∑
i

(
yi − y(xi | θ)

σi

)2

= − 1

2σ2

∑
i

(yi − y(xi | θ))2 .

We estimate σ2 as

σ2 ≈ 1

n

n∑
i

(yi − y(xi | θ))2 .

Once obtaining standard errors for a prediction, we can construct
confidence intervals. We use tα

2
· se(g(θ̂)) for (1 − α)% confidence intervals.

The confidence interval indicates confidence of fit. The prediction standard
error has an additional term

prediction se(g(θ̂)) =
√

(g′)T I−1
n g′ + σ2

r

where σ2
r is residual variance and approximated by

σ2
r ≈

1

n

n∑
i

(gi − g(xi | θ))2 .

A (1−α)% prediction interval is then tα
2
· (pred. se(g(θ̂))). The prediction

interval represents how often a new point would fall in the interval.

168

E Additional results for probabilistic EOS
In Section 5.3.3, we included the comparison of HMC, SVI, and delta

method for Pd Poirier-Tarantola. Here we include the remaining results for
Pd Birch, Au Murnaghan, and Au Vinet.

Figure E.1: Pd Birch comparison of HMC, SVI posteriors and delta method
prediction interval.

169

Figure E.2: Au Murnaghan comparison of HMC, SVI posteriors and delta
method prediction interval.

170

Figure E.3: Au Vinet comparison of HMC, SVI posteriors and delta method
prediction interval.

Similar to results from Section 5.3.4, we include GP results for Au here.

171

Figure E.4: Au Gaussian process posterior.

172

Figure E.5: Au minimum volume comparison of GP, Bayesian regression,
nonlinear regression uncertainties, and different model predictions.

Figure E.6: Au minimum energy comparison of GP, Bayesian regression,
nonlinear regression uncertainties, and different model predictions.

173

Figure E.7: Au bulk modulus comparison of GP, Bayesian regression,
nonlinear regression uncertainties, and different model predictions.

174

	Abstract
	Contents
	List of Tables
	List of Figures
	Introduction
	Motivation
	Technical background
	Potential energy surface
	Molecular dynamics simulation
	Machine learning

	Organization of dissertation

	Machine Learned Potentials for Complex Alloy Systems
	Introduction
	Machine learned potential
	ML potential form and fingerprints
	Training data for ML potentials
	Objectives

	Methods
	Data
	Software
	ML potential hyperparameters
	Efficient training

	Results
	Hyperparameter study
	ML potential training and evaluation
	Integration with MD simulation

	Conclusions

	Origin of the Stokes-Einstein Deviation in Liquid Al-Si
	Introduction
	Methods
	NPT cooling and NVT simulations
	NPT melting point simulations
	Diffusion
	Viscosity
	Effective diameter
	Radial distribution function
	Coordination numbers
	Voronoi tessellation
	Clusters
	Per-atom viscosity and diffusion

	Results
	Cooling simulation
	Melting point
	Diffusion
	Viscosity
	Stokes-Einstein relation
	Radial distribution functions
	Coordination number and chemical short-range order
	Voronoi polyhedrons
	Cluster effects on viscosity and diffusion

	Conclusions

	Uncertainty Quantification in Machine Learning and Nonlinear Least Squares Regression Models
	Introduction
	Uncertainty quantification methods
	Addressing uncertainty in molecular simulation

	Methods
	Practical modifications to the inverse Fisher matrix
	Code example

	Results
	One dimension input NN
	High dimensional NN potential

	Conclusions

	Model Specific to Model General Uncertainty for Physical Properties
	Introduction
	Equation of state
	Probabilistic models in engineering applications

	Methods
	Approximate inference for PGMs
	Gaussian process joint including derivatives

	Results
	Data
	Nonlinear regression
	Bayesian regression
	Gaussian process
	Overall comparison of methods

	Conclusions

	Conclusions
	ML potentials to accelerate simulations
	Extensions in analyzing liquid atomic configurations
	Uncertainty for models and physical properties

	References
	Appendix Details for Ni-Al-W data
	Appendix Settings for hyperparameter study
	Appendix Additional MD results for Ni-Al-W
	Appendix Delta method theory
	Appendix Additional results for probabilistic EOS

