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Train model – Behler Parrinello NN 

Select and generate relevant data required

• Increasing demand for large aircraft engines and industrial gas 
turbines for power generation

• Turbine blades are made from superalloys, one of few 
materials that withstand the high temperatures and 
mechanical stresses in the engines

• To understand conditions leading to defects, simulate local 
densities with quantitative models, the densities are difficult 
to measure experimentally

• Right Fig.: Previous work used molecular 
dynamics (MD) simulation with density 
functional theory (DFT), calculated 
densities to 2% agreement with available 
data1
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Machine Learned Potential

Energies,
Forces

~103 seconds

~10-2 seconds

• Machine learned (ML) potentials have been used in 
simulations successfully 

• Previously, no ML potential for liquid alloys of several 
chemical elements

• This work will expand on knowledge of building ML 
potentials – learn physics otherwise not possible to simulate 

• MD trajectories using DFT (VASP)

Fingerprints contain radial and 
angular Behler symmetry functions 
(24 total) NN [24, 11, 11, 1]

• Build neural network (NN) potential for Ni-Al-W
• Integrate ML potential with MD code to 

estimate thermodynamic properties of molten 
superalloys

Validate potential and iteratively retrain  
• Check error on atom configurations from MD 

trajectories not used during training 

Above: Defects 

• Train/val: 90%/10% of 2080 
points evenly sampled from 40 
MD trajectories

• Predict: 10,920 points

• Every turbine blade with a defect must be scrapped and 
reprocessed, equivalent to 49% loss in production costs2

• ML potentials save computing time on supercomputers       
Ex: ML potential decreased simulation cost from           
$185,000 to $500 3
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Introduction

• Fingerprints characterize local atomic environments

• Calculated diffusion, viscosity, 
radial distribution function, 
coordination number, atomic 
volume

NVT simulation with ML potential agreed well with 

Ab Initio MD  

Potential for Ni-Al-W

Model predictions on new data

• New data has fingerprints outside the train distribution

• Model is more accurate after 
retraining with 5 – 10% of points 
added from each new trajectory. 

• Current potential trained 
iteratively on atoms 32-500, 
temps 1720-2200K, different 
volumes

• 500 atoms simulation ran for 200,000 steps (10^5 fs) with 
energy conservation

• Uncertainty may be much 
larger if in extrapolation 
region

Atomic local 
environment

Atomic 
energy

• ML potentials may extrapolate, which motivates a need for 
quantitative model uncertainty

Systematically improve ML potential with retraining

• Good parity on energy, force, stress

• Determined parameters and procedures for building 
effective potentials

• ML potentials are accurate for Potential Energy Surface with 
enough training data

• ML potentials can be used with MD simulation to calculate 
material properties

• Uncertainty method can help determine prediction 
reliability and data regions of extrapolation


