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1 Introduction

Recommender systems are an area of interest for music, shopping, and other content. With popu-
larity of e-commerce, digital music platforms, etc., personalized recommender systems have high
commercial value. An effective recommender system should account for users’ previous preferences
and recommend items which the user is likely to enjoy or purchase. Some challenges are the large
database of available items, high dimensionality and heterogeneity of data representing the items
(songs, movies, etc.). Collaborative filtering is widely used in recommender systems, and uses feed-
back from many users on the items. Some collaborative filtering methods disregard the meta-data,
while recent context-aware methods utilize meta-data, which are expected to boost performance. As
example, meta-data of users could be their social network or demographics data, and meta-data of
movies could be genre, year, director, awards, etc. We study theoretical guarantees of collaborative
filtering with noisy observations and conduct an empirical study comparing it with related methods.

In collaborative filtering, the feedback matrix Y € R™*"™ with m users and n items contains feed-
back from each user for the items. The feedback could be explicit such as ratings, or implicit such
as number of listens, number of clicks, views, etc. Entries of Y are partially observed, and the
goal is to infer the missing entries. To pose this as a meaningful problem, we assume the variables
lie in a lower-dimensional subspace, i.e. Y is low rank and can be written as Y = WHT7 where
W € R™*F is a low-rank representation of users, and H € R™** represents items [2]. This can be
solved with the regularized optimization

min|| Po(Z — Y)|% + Arank(Z)

where Pq(+) is the projection operator that retains only observed entries [3]. Rank minimization is
NP-hard, and we solve the convex relaxation substituting rank(Z) with || Z||. the nuclear norm

min|| Po(Z = Y)|[7 + AlIZ].. (D

We will study problem (T)) and its extensions as shown in [1} 4. One natural motivation is including
meta-data to the collaborative filtering problem to utilize more information and boost performance.
Rao et al. included meta-data through graph structures where similar users or items are connected by
a graph edge [6]. They assume graph (V*, E*) adjacency matrix encodes relationships between m
rows of W and graph (V" E) for n rows of H [6]. To encourage W to follow its graph structure,
the term tr(W” Lap(E¥)W) is added to the minimization problem, where Lap(-) is the graph
Laplacian [7]], and similarly for H. We show the statistical guarantee for the resulting problem (2)
is similar to the one for problem (1)) by casting (2)) as a weighted nuclear norm regularization.

min | Po(WH” = Y)|[% + || WE + An[[H|[F + Atr(WT Lap(E*) W)+

Aptr(H Lap(EM)H). 2)
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2 Notation and Assumptions

2.1 Matrix Incoherence Assumptions

In general, it is not possible to solve problem (I for any matrix. As an example, for a rank-2 matrix
with all zeros except the top-left 2 x 2 corner, we would need to see basically all entries before
recovering the matrix. Candes and Recht summarized this idea, that the left and right singular
vectors of the matrix need to be uncorrelated with the standard basis, and introduced the property of
coherence [[1]].

Definition 2.1 (Coherence). Let U be a subspace of R™ of dimension k, Py the orthogonal projec-
tion onto U, and e; the standard basis. The coherence of U is defined as

n
pw(U) = 1 max ||Pue;|. 3)

The largest value of 4(U) is % and achieved for a subspace that contains a standard basis element.
We will see that the matrices which can be recovered in problem (1) have column and row spaces of
low coherence.

For the first theoretical result and non-noisy observation model, we introduce some assumptions.
Suppose Y has SVDY = ZI;:1 oju;v; with column and row spaces U and V', respectively.

Assumption 1. The coherences are upper bounded. max(u(U), p(V')) < po for some positive i

Assumption 2. The m X n matrix Zle u;v; has a maximum entry, bounded by py+/r/(mn) in
absolute value for some positive ;.

2.2 Spikiness and Rank Measures

The assumptions [T] and [2] are somewhat restrictive, and Negahban and Wainwright developed al-
ternate conditions to establish error bounds for problem (I)) with noisy observations [4]]. Here we
introduce the noisy observation model that they used. Suppose there exists Z* € R™*™ with rank
k. N entries from Z* are sampled uniformly and observed, which are Y = P, (Z*). We assume the
observed samples have added noise according to

Ya(),06) = Zaiyp(i) + \/%m
For convenience we define X; := Wsiea(i)eai) where €; is a random sign {—1,+1}, 27(Z) €
RY as the vector such that 2°(Z); := (X;,Z) fori = 1,...,N, and y € R" is the vector of
corresponding observations. Now y; = (X;, Z*) 4+ on is statistically equivalent to model .
For any matrix Z € R™ ", E[(X;, Z)?] = Y10, >4, R Z3.0) = |[VRZVC|%. We define
[VRZ\/C|% as the weighted Frobenius norm || - [|,,(r) in terms of weights R and C.

To establish error bounds on the problem , we need additional conditions on Z. We introduce
measurements of the matrix:

n~N(0,1). “4)

”\/EZ\/énoo HZHw(oo)
a(Z) =vy/mn-————— = ymn-——-,
) IVRZVC||p 1 Z|wr)

o ||\/RZ\/5”* — ||Z||w(*)
IVRZVC|r 12w
Intuitively, a(Z) is related to the "spikiness" of Z. For highly spiky matrices, such as the maximally

spiky matrix that has only one nonzero entry, we cannot establish error bounds. In addition, 1 <
a(Z) < /mn. B(Z) is related to the actual rank of Z.

B(2)

2.3 Extension to Graph-Based Regularization

We cast the regularizer of (2)) as a generalized version of the weighted nuclear norm. The weights
will be related to the graph Laplacians Lap(E®), Lap(E"). We define L, := A Lap(E™) + A\, [



and Ly, := Ay Lap(E") + \,I. Now let L,, = U, S, UL and L;, = U,S,U] be eigendecompo-
sitions for L., and Lj. The weighted norm will be related to A = UwSlzl/ and B = UnS,, 1/2,

We define the graph-weighted norm || Z|| 7 (,) := [|[A~*ZB~T||,. The corresponding graph-based
measurements are

147 2B A~ 2BT],
Z = _— [ —"T
R vy PR A VeV TR e

3 Key Results

The first result uses the matrix incoherence properties and noiseless observations.

Theorem 1. We assume Y € R™*™ has rank k and obeys Assumptions |I| and |2} and let d =
max(m, n). We observe N entries sampled uniformly at random. For

N > Cmax(si?, 1?1, prod"/*)dk (8 log d)

where 3 > 2, C is positive constant, the solution to problem (1)) is unique and equal to Y with high
probability.

Theorem [I] shows that the low-rank matrix can be recovered with sufficient observed samples. In
low rank, low coherence cases, the number of samples is much smaller than the total entries of the
matrix. For noisy samples and an alternative set of matrix assumptions using « and /3, Theorem
states the main theoretical result.

Theorem 2. We assume Z* is at most rank k,
problem

Z*lr < 1, and a(Z*) < «*. For the convex

(67

. o1 9 *
2 = sy sl = 2 DI+ N2l where€ = {2 | Zley < <

vmn
with A = Cyoy ) CFEMI0B0nE) | yieh pigh probability,

. k 1
12 = 2|25 < Ca® max{1, 02} - F P log(m £ 1)

N

where C, C1 are positive constants.

The set C restricts the matrices under consideration in terms of spikiness and rank measures. The
restricted set ensures that the loss is strictly convex, and Theorem [2| shows we are able to recover
the original matrix with high probability. Theorem [3]is the corresponding theorem for problem (2).
We will show that (2) may be cast as generalized weighted nuclear norm regularization. Theorem 3|
follows the same noisy observation model as Eq. 4}

Theorem 3. We assume Z* is low rank k, || Z*||r = 1, and the minimum singular values of A, B
(as defined in Section[2.3)) are 1. For the convex problem

. 1 N
7 = argmin |ly Z(Z2))3 + M| Z || s () where € := {Z 10g(2)By(2) < COM}

with A > Cyoy/ %Ng(mm, with high probability,

. k ]
1Z — 2*|[% < Ca?? max{1, 0%} (m + n)log(m +n)

N

where C, C1, cg are positive constants, and oy == ag(Z*).

Rao et al. propse a conjugate gradient algorithm to solve the subproblems for W, H of (2). Authors
of [1]] and [4] used semi-definite programming (SDP) solvers for their problems.



4 Proof Sketches

4.1 Proof Sketch of Theorem 2]

The proof requires restricted strong convexity (RSC) of the loss term £ = - [ly — 2'(Z)|3, and

RSC is defined in [[5]. When RSC holds, ”‘%(# > c||Z||,(r) for a positive constant c. This

indicates that the Hessian V2L is strictly positive definite for the restricted set of Z. We state the
following, which guarantees RSC in our case. For the constraint set

mxn N
o= {AGR AF0 | oD SCO\/(m—i-n)log(m—i-n)}’ )
1 1 A
T @ > GAl {1-a 2] vacs ©

and cg, c; are positive constants.

For convenience, define I' := VRZ\C, and Z'(T) := Z(Z). Note that 2”/(T'); = (X;,T)
where X; = R~1/2X,C~1/2. We have
. . 1
Poarg min ooy — 273 + M.
Tl <

mn

Our goal is to upper bound ||I" — I'*|| . We define A := I' — I'*, and split A into cases.

41.1 Casel
The first case is A ¢ €. By deﬁnition

(m+n)

m+n log
JAIE: < coviml Al IA ]y

- 1
< QCoa*||A*\/ m+n) og(m+n)

N
by [Alloe < IIT*[lo + [ITlloe < j% To bound the nuclear norm, we decompose A = A’ + A",

where A’ has rank at most 2k, and the nuclear norm of A” is upper bounded by nuclear norm of A’
plus sum of additional singular values. Combining with the triangle inequality, we obtain

JAIR: < cary/CEPRE N (A a3 o) @

N .
j=k+1

4.1.2 Case?2

Consider A € €, and ¢ ad) 1/2. Substituting for a/(A), we have

VN
”AHF < Civmn”AHOO <92

c—= 8
W SNUR ®
where we again used || Ao < jL for the second inequality.
On the other hand, consider A € %, and ¢ “\5@ < 1/2. From condition (@) we have
A
E- TSV 0

Because I is optimal and I'* is feasible,

1 - - * *
oy = 2O + ATl < 275 + ATl



After some algebra yields
H«%”( )3 Zemz ) AL = AT + Al
By Holder’s inequality, the triangle inequality, and substituting (9), we have

N
o 1 ~ o A
1A < coll5 > einiXillopllAll + AIA]. (10)

i=1

where || - ||, indicates the spectral norm. We use the same upper bound for [|A]|, as in Section
[.1.1] and this yields

N

. R U 1 N
A% < e(VEIAF+ Uj(r*))(U”NZEiWXiHOP+)‘)- (11)

j=k+1 i=1

Because Z* is at most rank £ by assumption, the terms Z;n:k_H o;j(I'*) = 0 and can be re-
moved from conditions (8) and (TTI). By the Ahlswede-Winter matrix bound, it can be shown that

% vazl €miXil|op > max{c, \/ %} Combining the pieces, we need bound , ,

or (II) to hold. We substitute \ as specified in Theorem [2]into bound (LI). Since o > 1 always, we
can summarize the conditions together as

(m + n)log(m + n) '

* * k
A7 =11Z = 2*|%) < Ca®max{1,0°} I,

4.2 Proof Sketch of Theorem[3

We first need to establish equivalence between the weighted nuclear norm and graph regularization.
We want to show || Z|| o7 := [[A7'ZB~ 7|, = infw, i 5(||A"*W|%+||B~1H||%). If this is true,
1
then t(WTL,W) = |[A"*W|% = ||S2U, W |% and similarly, t((HT L, H) = ||[B"'H||% =
1

|S2 U, ' H||%, by our definitions in Section It would then be clear that problem ll is a case of
the optimization problem of Theorem [3]

Z has a SVD and can be written as Z = Y, c;Au;v! BT with ||u;|| = ||v;|| = 1. It follows that
|A=1ZB~T|, = 3, |ci|. We also can write Z = WH?. In this case, the i-th column of W, H
are w; = \/|c;|Au; and h; = \/|c;|Av,. Now, [A™'W|% = | B~ 'H|% = >, |e;|, which shows

. —_ —_ . -1 .
|\A‘1ZB—T|| > infw, i 5(|A™*W||%.+| B~ H||%). For the other side, construct u; = %,

v, = W’ and ¢; = ||A- WZHHB 'h;||. We have Z = Y, c;Au;vI BT = Y, w;h!.
Now, |c;| = A= wi ||| B~ hy|| < 2([A~ w; |2 + || B~ hy[|?) by the inequality of arithmetic and
geometric means. This shows || A~ 1ZB Tl <infwm 2(JAT'W|Z + B H||%).

The remainder of the proof could be similar to Section[d.T} however Rao et al. use a slightly different
approach. Specifically they use Theorem 1 of [5]], which is stated here

Theorem 4. For the convex optimization problem

Z=arg min = (Z;y)+\R(Z)
ZeRmX’n
where the regularizer R is a norm and decomposable w.r.t. the subspace pair (M, M=) and M C
R™*™: the loss function L is convex and differentiable, and satisfies restricted strong convexity with
curvature k; and X is a strictly positive constant A > 2R*(NL(Z*)), for Z* € M, we have

A

2
12 = 27| < 95 (M)?

where U(M) := SUP ze M\ {0} %



In the steps of the proof, they show that ||Z||,(«) < vk, and with the assumption || Z||p = 1, it
follows that ¥(M) < k. They also show R*(Z) = HZHf‘d(*) = ||ATZB||, and find an upper

bound for R*(VL(Z*)) < Coy/ %. This upper bound is set equal to A as required by

Theorem 4] Finally, they show the restricted strong convexity holds, and it is similar to Eq. [6] for
the specified set C of Theorem[3] From [J3]], « is related to the lower bound of the eigenvalues of the
Hessian V>£(Z*), and the RSC condition indicates that x oc 1/a.

5 Experimental Results

To corroborate Theorem 2] we performed a experiment to verify the upper bound provided in The-
orem [2| and investigate the effect of the number of obervations on the total loss (the square of the
Frobenius norm of the true matrix and the predicted matrix). According to the assumption of The-
orem 2, we used a synthetic random matrix with 20 rows and 20 columns. We contrained the rank
of the matrix to be less than or equal to 5 while the Frobenius norm of the matrix is less than or
equal to 1. These are the basic two requirements for the matrix. Specifically, to generate a matrix
M of m rows and n columns, we first generate two matrices U and V' with the shape of m x k and
n X k respectively. Then we randomly masked out the entries of these two matrices with a certain
probability. These two steps help to get a matrix M with low rank and small norm from UV T

Before applying the matrix in the experiment, we double checked its rank and norm and ensure it
satisfies the requirements. After that, we randomly draw /N samples from the generated matrix as
the training set. For simplicity, we assume the samples are distributed uniformly across the rows and
the columns. Thus, the matrices A and B when calculating the o and 3 in[2]are both identity matrix.
For the training part, we used the constrained optimization module of scipy to obtain the solution
that minimizez the MSE loss and the nuclear norm loss while keeping small infinity norm as shown
in Theorem 2] Since there is some randomness during the experiments (e.g., matrix generation,
observation selection), we repeated the experiment with the same parameters (e.g., size of the matrix,
number of the observations) for 10 times.

The average and the standard deviation of the results are reported in Figure [T and Figure 2} Figure
shows the provided upper bound of the SSE from Theorem 2] Clearly, the upper bound decreases
with more observation provided to the training set. Figure [2]illustrates the trend of the SSE with
the number of observations. Similar to the upper bound, it also decreases along with the number
of observations. We note that the upper bound has much greater magnitude compared to the SSE.
This might be attributed to the choice of the positive constants C' and C; in Theorem[2] We did not
find the ways to estimate these two constants in the paper, thus we arbitrarily set them as 1 in our
calculation. Using smaller constants (e.g, set C' = 0.001) will certainly lead to lower upper bound.
Thus, how to estimate the value of these constants could be a future direaction to makes Theorem
more concrete.

In addtion, we investigated the effect of the rank of the target matrix on the theoretical upper bound
and the experimental prediction error. The experimental parameters are the same as the above de-
scription, except in this experiment, we fixed the number of observations to be 50, and varied the
rank of the target matrix from 1 to 5. Corresponding results are shown in Figure [3] and Figure [4]
Apparently, both the upper bound and the prediction error increase with the rank of the target matrix.
Intuitively, when we fix the size of the training set, the matrix with more information (higher rank)
is more difficult to recover than the matrix with less information (lower rank).

6 Conclusion

In this project, we investigate the theoretical properties of the matrix completion provided in Theo-
rem|[I]to Theorem [3] These theorems construct the upper bound of the matrix recovery error under
some assumptions. We discussed the theoretical proofs for these theorems in this project. In addi-
tion, we performed several experiments to verify the result of Theorem [2] In particular, we studied
the effect of the obvervation size and the rank of the target matrix on the theoretical upper bound and
the experimental matrix recovery error. We found that increasing the number of observations could
result in lower error as expected and it is aligned with the theorems. Given a number of observations,
matrices with higher ranks are harder to recovery in our experiment. This result is also reasonable
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Figure 1: Upper bounds of the error provided by Theorem |2 The shaded region represents the
standard deviation.
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Figure 2: Sum of the square error with different observations. The shaded region represents the
standard deviation.

according to Theorem 2] One of the issues that remain in our experiment is the estimation of two
positive constants in Theorem[2} These two contants play an important role on determining the mag-
nitude of the upper bound. Arbitrary setting may affect the usefulness of the upper bound. Thus,
how to estimate these constants could be a future direction.

Division of Work

Ni Zhan: Theoretical proof sketch for the theorems. Zicheng Cai: Literature reviews. Yilin Yang:
Experiment implementation.
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