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1 Introduction

The demand for energy is increasing globally. In an effort to meet this demand, alternative fuels such
as H2 and synthetic hydrocarbons are used. These fuels are generated by electrochemical reduction
reactions, which are currently limited by lack of a sufficiently active, selective, and low-cost catalyst
[5].

In the reaction process, a reactant molecule (adsorbate) lands or adsorbs onto a catalyst surface
site. The energy associated with this adsorption indicates effectiveness of a potential catalyst. To
screen catalysts, we can calculate the adsorption energy for any possible catalyst using first principles
calculation called density functional theory (DFT). DFT is the most accurate method to obtain
energies and forces on atoms computationally, but is computationally expensive.

To calculate the adsorption energy using DFT, we require the exact positions of the adsorbate and
surface catalyst at the equilibrium state. The usual way to obtain the equilibrium structure is by
guessing a starting configuration and using DFT to predict the next configuration for a small timestep.
Repeating this many times is known as a molecular dynamics (MD) simulation and results in a
trajectory of configurations, reaching equilibrium. Because DFT calculations along the trajectory
are computationally expensive and we are only interested in the final state, we aim to use machine
learning (ML) to predict the final equilibrium state given an initial configuration.

We have data from MD trajectories and DFT; each snapshot along the trajectory has configuration
of atoms, its energy, and forces on atoms. The final snapshot of the trajectory is the ground truth
equilibrium state that will be used to compare with a ML model prediction. Specifically, we predict
the distance between the adsorbate and its neighboring atoms.

The model inputs are atomic configurations which are analogous to images or 3D images. We use a
convolutional neural network (CNN) to learn representations of each atom’s local environment, and
then apply a feed forward network to predict distances between two atoms.
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2 Background

As a preliminary result, we demonstrate that our convolutional neural network can extract meaningful
representations from the input features (atomic structures) to predict properties. We trained the CNN
to predict adsorption energies of CO on various pure and intermetallic surfaces. The model was
trained with 90% of 20,000 DFT data and then validated and tested with 5% of the data, each. We use
the same DFT dataset to train our main-results model to predict distances, described in the following
sections. For the preliminary adsorption energy model, the test and validation RMSEs were less than
0.3 eV, and MAEs were less than 0.2 eV.

The preliminary results show that the CNN was successful in predicting adsorption energies from
configuration of atoms. In literature, models with high accuracy for adsorption energy reach errors of
0.1 to 0.2 eV for RMSE or MAE [6], while our model reached 0.3 eV error. Therefore, the model
should also accurately predict distance between the adsorbate and surface atoms because adsorption
energy is related to these distances. In this work, we extend the CNN to predict a novel property, and
thereby show that the model structure can be applied to multiple physical properties.

3 Related Work

Advanced deep convolutional networks have enabled breakthroughs in processing raw representation
of data such as image, video, and speech, and have recently been used for atomic configurations. Xie
et. al. applied a convolutional neural network to a graph representation of crystals to predict various
properties of crystals using 104 DFT calculations as training data [6]. The graph representation of the
crystal structure encoded both atomic and bonding interactions between atoms. Their model, called
crystal-graph convolutional neural network (CGCNN), predicted accurate properties with respect
to DFT calculations at computational speeds orders of magnitude faster. Other work by Schütt et.
al. used continuous filter convolutional layers to represent the location and interaction of atoms and
learn energies and forces [4, 2, 3].

Professor Ulissi’s group in chemical engineering department, Carnegie Mellon University, used
the graph convolutional neural networks to predict adsorption properties of CO on a variety of
intermetallic surfaces, and achieved high accuracy to DFT data.

Other researchers are actively using deep learning methods and DFT data to predict chemical
properties of atoms or molecules for design of novel materials. However there has been little effort to
circumvent extra DFT calculations by directly predicting equilibrium atomic structures as proposed
in this work.

4 Methods

The training data are from snapshots of DFT MD trajectories. A data point for model input is the
atomic configuration from an initial snapshot of an MD trajectory, with various numbers of atoms in
a configuration or "slab". The corresponding model output are the distances between the adsorbate
atom and its four nearest atoms. For the ground truth label, we use the final snapshot in the MD
trajectory to identify the closest four atoms and their distances to the adsorbate. We use data structures
to index and keep track of atoms in a configurational image. The entire configurational image impacts
the prediction because physical properties are the result of combined interaction between all atoms
with each other. The overall model, or CGCNN, structure is shown in Fig. 1. The first step is to
represent the atomic configurations in suitable data format. We describe this process and our input
data structure in the "Graph Representation of Data" section. We then describe the details of the
convolutions which result in a feature vector describing the local environment around each atom in
the configuration. Finally, we concatenate the feature vectors of two atoms as a "bond feature vector",
which we feed to a feed forward neural net to predict the bond distance between those two atoms.
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Figure 1: Complete CGCNN architecture

Graph Representation of Data

We collect about 20,000 MD DFT trajectories for CO adsorption on surfaces of pure metals, metal
alloys, and intermetallic alloys for this work. This dataset contains indices and positions of individual
atoms, distances between neighboring atoms, and adsorption energies of the CO adsorbate to the
surface for both the initial and final slab structures. We convert initial atomic slab structures into
machine readable graph representations by encoding atomic information and bonding interactations
between neighboring atoms. Fig. 2 shows some of the key components of the numerical representation
of atomic slab structures, and Fig. 3 shows the data structure for an example slab. Each slab has
a matrix of Atomic Feature Vectors v and a tensor of Neighbor Feature Vectors u, which will be
described further.

Each atom in the slab structures is represented by an Atomic Feature Vector vi that encodes the
useful atomic properties such as atomic group number, period number, etc. With one hot encoding of
these atomic properties, the final atomic feature vector has 92 binary values and maps to the unique
chemical element the atom corresponds to. This atomic feature representation is identical to the one
used in the original CGCNN model [6].

The Neighbor Feature Vectors and Neighbor Feature Index capture connectivity and relative location
information between the atoms. We represent the connectivity of atoms with neighboring features
based on "Voronoi Connectivity" [1]. Each connection (bond) between atoms is represented with a
vector with Nperiods elements. Nperiods is the number of repeated cell considered. (Slabs are cells
repeated in x and y directions infinitely). In our case, we consider six cells. Therefore, there will be
six bonds between atom i and atom j , since atom j in the repeated cells also counts. We consider
12 neighboring atoms to create neighbor feature and index vectors for each atom. Therefore, for
each atom in the slabs, it has a neighbor feature tensor of Nneighbors ×Nperiods, specifically 12× 6.
Atomic features and neighbor features are the input to the CGCNN model.

The target is to predict the N closest distances of the adsorbate atom from the other atoms. In our
case, N is chosen to be four. As shown in Fig. 3, we store indices of the adsorbate and its closest four
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atoms, and their corresponding bond distances to the adsorbate based on the final configurations. We
use these bond distances as our target values.

Figure 2: A graphical representation of converting an atomic structure into numerical inputs for the
convolutional neural network. (a) Nine atomic properties used to represent each atom in a slab (b)
The solid angle (Ω) used to encode neighbor information to create neighbor atom feature vectors and
corresponding indices of the neighboring atoms
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Figure 3: Example of the numerical representation of an atomic slab structure

Model

After we create graph representations of atoms, we concatenate atomic feature vectors vi and
vj of atoms i and j and neighbor feature vectors u(i,j) between atoms i and j, to a new vector
zt(i,j) = vt

i ⊕ vtj ⊕ u(i,j). We then build convolutional neural network on top of each atom to
extract features of atoms that are optimum for predicting target bond distances. We iterate several
convolutions to update atom feature vectors vi by convolution with surrounding atoms and bonds
features.
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where � denotes an element-wise multiplication, σ denotes a sigmoid function, g denotes any non-
linear activation function, and W and b are weights and biases of the neural networks, respectively.
After R convolutions, we create bond feature vectors of the adsorbate and each of its closest four
atoms by concatenating the atom feature vectors of the adsorbate and each of those four atoms, i.e.,
vbond = vR

adsorbate ⊕ vR
closestatom. Then we create multiple hidden layers to capture the complex

mapping between the extracted bond features and the target bond distances followed by an ouput
layer that predict bond distances.
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Experiment Details

For each atom in the slabs, the atom feature vector for each atom i, vi ∈ R92. The neighbor
vector for each bond ij, uij ∈ R6, since six repeated cells are considered. In the CGCNN model,
eight convolution layers and two fully connected layers are used. The atom feature vector after the
convolutions is in R46. After concatenation, the feature vector for bond distance prediction fed to
the fully connected layer is in R92. There are 92 nodes in each of the two fully connected layers.
Table 4 shows the hyperparameters and architecture of the CGCNN. We used 12,000 data points for
train, 4,000 for validation, and 4,000 for test sets. We chose the best model weights based on lowest
validation loss.

batch size learning rate max epochs convolution layers fully connected layers
214 0.0056 200 8 2

Table 1: Hyperparameters and Architecture of CGCNN

5 Results

In the experiment, we predict the bond distances of carbon atom from the four closest neighbor atoms.
Fig. 4 shows a parity plot that compares the prediction from CGCNN and the target values generated
from DFT. The training, validation, and test MAE are 0.09 Å, 0.16 Å, and 0.15 Å, respectively. The
training and test MAE are in the same range, which indicates that the model is not overfitting. We
expect a satisfactory model MAE of 0.05 Å, and the model should be further improved to reach this
level of accuracy. Another metric used to compare our model is percent error, or residual of predicted
and actual bond length over actual bond length. An estimate of our percent error for test set is 5%.
Typically the bond distance difference between the final and initial structures is around 0.2 Å (or
10% error) so using our predictive model improves on randomly guessing an initial distance for the
adsorbate above the surface.

Figure 4: Parity plot of predicted and actual bond distance

6 Discussion and Analysis

To better understand our model performance and limitations, we perform further analysis, including
separating the four bond distance predictions within each slab. Fig. 5 shows the parity plots for each
bond distance of a slab configuration, from closest bond to furthest bond. The closest bond has the
lowest MAE of 0.01, and the MAE successively increases for the farther atoms to 0.09, 0.15, and
0.17.
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Figure 5: Parity plot of predicted and actual bond distance separated by bond distance

The average error increases when examining further bond distances within a slab. This could be
because there is better connectivity or feature respresentation for the close atoms within a slab
configuration. The CGCNN is likely learning a relatively local representation around each atom.
To improve the CGCNN’s ability to predict further bond distances and capture information about
further atoms, the connectivity information could be modified to change relative connectivity strength
between atoms based on their distance.

The closest bond distance is probably between C and O, and it is a distance within the adsorbate
molecule and therefore likely easier to predict. From Fig. 5, the model appears to underpredict the
CO bond distance, however the reason for this underprediction is unclear.

From Fig. 5, the model has higher error when predicting bond lengths around 2 to 3 Å. This is
probably the most relevant bond, most affected by the combinations of atom interactions, and possibly
the bond between the adsorbate and the surface. Therefore, this bond has the most variance across
slabs.

One source of error could be that the adsorbate moved significantly from the initial to final configura-
tions. It is possible that the adsorbate moves across the slab surface and becomes closer to different
atoms than in the initial configuration. In these cases, the predicted bond lengths could have much
higher error. To investigate this, we could find the indices of the closest four atoms of the initial and
final configurations and compare them.
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To check for overfitting, we compared the training and validation errors trends. Training error
continued to decrease, while validation error reached a minimum, which indicates possible overfitting.
However, the test error is not satisfactorily low enough.

To decrease overfitting, we could decrease the dimension of the bond feature. As examples, we
could try different bond feature vectors such as averaging two atomic feature vectors or element
multiplying them, and both would decrease the bond feature dimension to R46. Another way to
decrease overfitting is decreasing the size of feed forward net, for example decreasing the number of
nodes in each layer. Using a smaller feed forward net would force the convolutional layers to learn
more useful representations of atom environments.

In our training data, we have 7000 different types of slabs. Many slabs appear only once in the
MD DFT trajectories. The CGCNN model should generalize to new slabs, because of the atom
feature vectors for different atom types and convolutions. However, it is possible that the model
does not generalize well because there was not enough data used for training. We can include more
configurations along the trajectory, including the final configuration, in the training set to improve
model performance.
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